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PREFACE

This report describes in detail innovative analytical research aimed at demonstrating
the remarkable potential of an actively controlled partial span flap, located on the trailing
edge of the blade, for vibration reduction in helicopter rotors in forward flight.

The research described in this report was carried out in the Mechanical, Aerospace and
Nuclear Engineering Department at UCLA, and it was funded jointly by NASA Grants NAG
2.477 and NASA NGT-50444 with Dr. S. Jacklin, from the Rotorcraft Aeromechanics Branch
at NASA Ames, as the grant monitor. The authors express their appreciation to the grant
monitor for his useful comments and suggestions.

The principal investigator for this sponsored research activity was Professor Peretz P.
Friedmann. This constitutes essentially the first author’'s Ph.D. dissertation; however, cer-
tain changes were made to the dissertation, so as to improve it, before turning it into this

report.
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SUMMARY

This report describes an analytical study of vibration reduction in a four bladed heli-
copter rotor using individual blade control (IBC) implemented through an actively con-
trolled, partial span, trailing edge flap located on the blade. Two different blade models
are used in the study: (a) an offset-hinged spring restrained blade model with fully coupled
flap-lag-torsional dynamics, and {b) a completely flexible elastic blade model using three
flap, two lead-lag and two torsional rotating modes. For both blade models the vibration
reduction with the actively controlled flap is compared with the vibration reduction
produced by conventional IBC, in which the entire blade undergoes cyclic pitch change.
For both cases a deterministic controller is implemented to reduce the 4/rev hub loads.
For all cases considered it is found that the actively controlled flap produced vibration re-
duction comparable with that obtained with conventional IBC, however the power require-
ments are between 10-30% of those needed for conventional IBC. The control studies
performed using the flexible blade model and the offset-hinged spring restrained blade
model are compared. It is found that despite large increases in vibration levels due to the
more realistic blade model, vibration reduction can still be accomplished without excessive
power expenditures or control angle inputs. A careful parametric study is conducted in
which the blade torsional frequency, spanwise location of the control flap, and hinge mo-
ment correction factor are varied. The results ciearly demonstrate the feasibility of this
new approach to vibration reduction. There is also indication that this approach. in which
a conventional swashplate is used in conjunction with the actively controlied flap such that
the vibration reduction device is completely decoupled.from the primary flight control sys-
tem used for trim, has potentially significant advantages over conventional IBC. Finally,
time domain simulation of the helicopter response to control is performed, validating the
frequency domain based control algorithms that have been implemented to reduce vi-
brations.

Xix






Chapter |

INTRODUCTION AND OBJECTIVES OF THIS STUDY

1.1 INTRODUCTION AND BACKGROUND

Vibrations in helicopters, which arise from such sources as the rotor system, the tail
rotor, the engine and the transmission, lead to fatigue damage of the structural compo-
nents, human discomfort, difficulty in reading instruments and the reduced effectiveness
of weapon systems. A comprehensive review on the sources of vibration is presented in
Refs. 29 and 41. A major goal of current helicopter research is thus to reduce the vibration
levels experienced by crew, passengers and equipment during flight.

Current research has been driven by both commercial and military requirements.
Commercial passenger acceptance would greatly benefit from the perception of the heli-
copter as having a “jet smooth ride”. Furthermore, reduction of vibration levels would lead
to the reduction of high maintenance/replacement costs associated with the fatigue dam-
age of structural components. Decreasing vibration levels and allowing higher cruise
speeds would increase the load utilization of helicopters and so decrease relative capital
costs. From a military point of view, increased speed leads to benefits in survivability and
deployment response times. The same maintenance and comfort benefits as for civil op-
erations apply. Reduction in vibration levels in military helicopters allows more accurate
weapons deployment and more effective intelligence gathering.

The traditional approach to vibration reduction in helicopters is based on the use of
passive means such as vibration absorbers or isolation devices. A comprehensive review
of helicopter vibration control presented in Ref. 41 describes many of these methods.

More recent investigations into passive means offer promise of reducing vibrations to
levels below those attainable by vibration absorbers and isolators. One promising ap-
proach involves the design of rotor blades which inherently have low levels of vibration.

This may be done by applying optimum structural design techniques to the aeroelastic



tailoring of the blade. Geometry, mass and stiffness distributions may be optimized to give
minimum vibration levels at the rotor hub or at specified locations in the fuselage. The
fuselage itself may also be tailored to reduce vibrations at various points of interest such
as the pilot seat, passenger compartment or the tail boom. Surveys of the application of
structural optimization to helicopter vibration problems are presented in Refs. 10 and 33.
However, the use of structural optimization may lead to higher manufacturing costs, es-
pecially in the manufacturing of aeroelasticaly tailored rotor blades.

The desire to achieve better vibration reduction has also lead to the use of active con-
trols in reducing helicopter vibrations. Active controllers can be used to reduce vibrations
by eliminating their source, namely the aerodynamic excitation to the rotor. Among the
various approaches which utilize active control for vibration reduction in forward flight, the
approach commonly denoted higher harmonic control (HHC) has emerged as a potential
candidate for possible implementation in production helicopters. This concept relies on the
application of higher harmonic pitch changes {i.e. above the 1/rev pitch changes required
for directional control and vehicle trim) to modify the blade airloads so as to minimize
harmonic blade loading. For a rotor having Ny, blades, the predominant vibrations are at
Ny/rev. In HHC, these are normally alteviated by applying Ny/rev pitch excitations super-
imposed on the collective (i.e. average), lateral (i.e. 1/rev sine) and longitudinal (i.e. 1/rev
cosine) pitch inputs used to control the helicopter attitude and velocity. This is done by
applying Ny/rev harmonics in the fixed system through an actively controlled conventional
swashplate through the use of hydraulic servo-actuators. Numerous studies have demon-
strated the validity of this approach for producing substantial reduction in vibration levels
in forward flight by analytical simulations[5,7,23,34,36.43, 44517, wind tunnel
tests[27.35,49], and flight tests[31,40,56,57].

in an alternative approach, denoted individual blade control {(IBC)[26], the time de-
pendent pitch angle of each blade is independently controlled in the rotating reference
frame. This approach removes many of the limitations which exist in active control through
a conventional swashplate, but a control system more complex than the conventional

swashplate may be required[20.21]. Recent wind tunnel and flight tests illustrate the



considerable mechanical complexity associated with the implementation of this
approach[22,42]. It is worthwhile mentioning that both HHC and conventional I1BC intro-
duce the control for vibration reduction through the primary flight control system of the
helicopter and therefore the presence of such an active vibration control device introduces
some constraints on the system from an airworthiness point of view.

The desire to decrease mechanical complexity and weight, and minimize maintenance
costs, has lead to the development of hingeless and bearingless rotor hubs. In hingeless
rotors the mechanical flap and lead-lag hinges present in articulated biades are replaced
by a flexible cantilevered blade, where the blade flexibility provides for virtual hinges. In
such blades the mechanical pitch bearing is retained. Bearingless rotor blades are similar
to hingeless blades except that the pitch bearing is eliminated and the pitch input is intro-
duced through @ torsionally flexible structural element. Typical articulated, hingeless and
bearingless rotor configurations are shown in Fig. 1. The mechanical simplicity and weight
savings in hingeless and bearingless rotors is generally accompanied by increases in vi-
bratory levels; thus vibration reduction in such rotors becomes an even more important
issue than for articulated rotor configurations.

Recently, comparative studies of vibration reduction in forward flight using HHC were
carried out for equivalent articulated and hingeless rotor configurations[43,447]. For both
configurations substantial vibration reduction was achieved with HHC blade pitch angles
under three degrees. However, a comparison of power requirements revealed that the
power required to implement HHC on hingeless rotor blades is significantly higher than for
the equivalent articulated rotor blades. These higher power requirements appear to be
associated with the need to drive harmonically the fairly large and coupled structural dy-
namic system represented by the hingeless blade.

This provided the motivation for exploring an alternative concept where the modification
of the aerodynamic loads on the blade, for vibration reduction in forward flight, is accom-
plished through the active control of an aerodynamic surface located on the blade, similar
to the partial span trailing edge flap shown in Figs. 2 and 3. It was postulated that such a

device would produce substantial reduction in power requirements when compared with



HHC or conventionat IBC, which require the introduction of cyclic pitch changes for the
whole blade. Furthermore, such an actively controlled flap can be conveniently controlied
by a control loop which is separate from the primary control system; thus it will have no
influence on airworthiness and it will enable one to retain the conventional swashplate for
flight control purposes. It should also be mentioned that this concept is not entirely new;
over twenty years ago researchers at Kaman[28] used a servo flap on a controllable twist
rotor (CTR) configuration to produce an external pitching moment to alter the elastic twist
distribution of the blade. By cyclically varying the blade twist, they were able to achieve
a 30% decrease in blade bending amplitudes, and a considerable increase in rotor per-
formance, as represented by decreases in solidity and rotor power, and an increase in
range.

The use of an actively controlled flap located on the blade to reduce vibrations in for-
ward flight falls into the category of IBC since each aerodynamic surface is individually
controlled in the rotating system. Such a configuration has the potential for reducing vi-
brations with much less power while retaining the versatility of conventional IBC, but
without requiring the replacement of the conventional swashplate by a more complex me-
chanical system, and without adversely affecting the airworthiness.

The review of the literature clearly indicates that the use of an actively controlied, par-
tial span, trailing edge flap to reduce helicopter vibrations has not been studied previously.
Therefore, the first portion of this study represents a feasibility study of the proposed con-
cept, while the second part deals with issues conce;ning the practical implementation of
the new approach to vibration reduction.

It is expected that this research will have a significant influence on the field of vibration

reduction in rotorcraft.



1.2 OBJECTIVES OF THE RESEARCH

The first objective of this study is the development of an aeroelastic analysis for the

purposes of studying individual blade control (IBC) as implemented through an actively

controlled trailing edge flap located on the blade. After the analysis had been deveioped,

the ultimate goals of this research were addressed. These goals are described below.

Initially, a simple offset-hinged spring restrained rigid blade model is used to study the

feasibility of this novel approach for reducing vibrations. The objectives of this first stage

of the research are:

1.

Study of the relative effectiveness of IBC when implemented through an active
control surface to achieve vibration reduction in forward flight and its comparison
with conventiona!l IBC.

Compare the power required to implement the control for these two alternative
approaches.

Examine several control algorithms and determine their effectiveness for reducing
vibrations in steady forward flight.

Determine the influence of the blade torsional flexibility on the vibration reduction

effectiveness and power requirements of the various control approaches.

Subsequently. after firmly establishing the feasibility and potential of the actively con-

trolled flap, a more detailed study is carried out which focuses on the practical implemen-

tation of this new approach to reducing vibrations. The objectives of this second stage of

the research are:

1.

Implementation of the actively controlled partial span flap with a fully elastic, ge-
ometrically nonlinear, blade model in which the dynamics of the blade are repres-
ented by two torsional, two chordwise bending and three flapwise bending modes.
Examination of the impartance of appropriately modeling the dynamic behavior of
the blade by comparing results between the two different blade models.

Introduction of compressibility effects and hinge moment correction, which ac-
counts approximately for the gap of the trailing edge flap, so that the aerodynamic

loads on the blade and control flap are represented in a more realistic manner.



4. Trend studies of the effect on the vibration reduction potential of the actively con-
trolled trailing edge flap when the following parameters are changed: (a) spanwise
location and size of the control flap; (b) torsional stiffness of the blade and (c) the
aerodynamic hinge moment correction factor.

In the final stage of this study, the results obtained in the frequency domain are vali-
dated in the time domain by direct numerical integration of the nonlinear equations of
motion. The specific objectives of this last stage are:

1 Validation of the coupled trim and aeroelastic response solution obtained using the

harmonic balance technique.

2 Validation of the optimal control solution obtained in the frequency domain.

it should be emphasized that this is the first study which contains a detailed treatment

of an actively controlled flap for vibration reduction in helicopter rotors.



Chapter 1l

MODELING ASSUMPTIONS AND COORDINATE SYSTEMS

The modeling assumptions which serve as the starting point in the development of the
aeroelastic analysis are summarized in this chapter. The orders of magnitude which are
assigned, based on experience. to the various parameters appearing in the problem for-
mulation are listed. Finally, the various coordinate systems, and related coordinate tran-

sformations, used to formutate the equations of motion are defined.

21 MODELING ASSUMPTIONS

(1) The hingeless blade is cantilevered at the hub with an offset e from the axis of ro-
tation, as shown in Fig. 7.

{2) The blade feathering axis coincides with the elastic axis of the blade and is preconed
by the angle /ip, which is depicted in Fig. 7. The blade has no torque offset, sweep or
droop.

{3) The undeformed blade is straight with a general pretwist distribution Gpt(x) built in
about the elastic axis of the blade.

(4) The blade cross-section is assumed to be symmetrical with respect to its major
principal axes in the formulation of the inertial loads but the effect of camber is accounted
for in an approximate manner when formulating the aerodynamic loads. The blade cross-
section has four distinct points: the elastic center, the aerodynamic center, the mass
center. and the tension center (area centroid), as shown in Fig. 10.

{(5) The blade chord ¢y, mass per unit length my , and principal cross-sectional inertias
lugo and lygs. are allowed to vary along the span of the blade.

(6} The blade has an aerodynamic surface. modeled as a partial span trailing edge flap
{as shown in Figs. 2 and 3), with its centroid a distance x_ from the blade root. The control

flap has a chord length c.5 and a span L.



(7) The leading edge of the control surface is attached to the trailing edge of the blade
by a series of hinges located at a finite number of discrete points along the control surface
span. The axis of each hinge constrains the control flap cross-section to rotate only in the
plane of the blade cross-section.

(8) At least one hinge is restrained in torsion about its axis by a spring representing the
stiffness of the control system. The control flap actuator deflects the flap by the angle o
(positive down) relative to the blade chordline. This angle represents the control input for
the purposes of vibration reduction.

(9) The control surface cross-section is assumed 1o be symmetrical with respect to its
major principal axes and to have the same airfoil section as the blade. The control flap is
assumed to have the same pretwist distribution as the blade.

{10) The control flap chord c.,, mass per unit length m. , and principal cross-sectional
inertias lyc, and lyca, are allowed to vary along its span.

(11) The blade is allowed to have fully coupled flap, lead-lag and torsional dynamics,
undergoing moderate deflections and finite rotations. The blade is treated as inextensible.

(12) Two-dimensional quasisteady Greenberg theory, modified to include the effects of
an aerodynamic surface, is used to obtain the distributed aerodynamic loads. The aero-
dynamic force and moment due to the control flap are scaled by C; < 1, an empirical cor-
rection factor accounting for the presence of a control surface gap, which is not modeled
in this study.

(13) Reverse flow is accounted for by setting the lift and moment to zero inside the re-
verse flow region, and by reversing the sign on the drag term.

(14) Compressibility effects are either neglected, or accounted for in an approximate
manner using the Prandtl-Glauert correction factor. Dynamic stall and tip loss effects are
neglected.

(15) Uniform inflow is assumed for convenience.

(16) The structural damping in the blade is assumed to be of a viscous type.

{17) The rotor shaft is assumed to be rigid and the rotor speed constant.



(18) Four identical blades are combined to represent a four-bladed, hingeless, fixed-hub
rotor configuration in steady, level flight.

The various modeling assumptions listed above are used in the various stages of the
problem formulation. Additional modeling assumptions, specific to a particular blade
model, are discussed in Chapter 4 for the offset-hinged spring restrained blade model, and

in Chapter 5 for the fully elastic blade model.

2.2 EXPLICIT FORMULATION USING A SYMBOLIC COMPUTING FACILITY

There are two distinct approaches commonly used to formulate the equations of motion
of a helicopter rotor blade. The first approach is usually denoted as the explicit approach
because it leads to a set of detailed aeroelastic equations of motion in which all of the
terms (i.e. inertial, aerodynamic and structural) appear as explicit functions of the blade
degrees of freedom. The second approach is usually denoted as the implicit approach. In
this approach detailed expressions for the aeroelastic equations of motion are avoided.
Instead the aerodynamic, inertial and structural loads are generated in matrix form inside
the computer. When this approach is used the boundaries between the formulation phase
and the solution phase become blurred.

Explicit formulations have some advantages over implicit formulations. Explicit formu-
lations enable one to write out the equations of motion in detail. This allows one to inspect
the equations and identify the various terms from a physical point of view, which facilitates
the understanding of the equations. Furthermore, explicit equations derived by various
researches can be compared, and any differences can be identified, clarified and under-
stood. Thus a given formulation can be validated without having to resort to numerical
computations of the blade response and stability.

Computationally, the numerical implementation of blade stability and response calcu-
lations based on explicit formulations can be more efficient than implicit formulations, re-
quiring less computer time. This is due to the fact that in explicit formulations much of the

algebra is carried out prior fo any numerical computations. In addition, explicit ex-



pressions for the stability derivatives are available. Conversely, implicit formulations re-
quire the numerical approximation of the stability derivatives by the computer.
Furthermore, the implicit approach frequently mandates iterative solutions.

Naturally, explicit formulations atso have some disadvantages. The task of formulating
explicit equations can be algebraically formidable and involve a large number of terms.
For this reason explicit formulations generally require employing an ordering scheme to
systematically neglect higher order terms in order to keep the equations to a manageable
size[11]. Another disadvantage of explicit formulations is that a small change in the
aeroelastic model might require the complete rederivation of the explicit equations. In an
implicit formulation the loads are left in general form and are combined numerically. so the
model may be changed without requiring substantial changes in the problem formulation.

Fortunately, substantial increases in computer power during the last decade, as re-
presented by high computational speeds and the availability of large core memory at low
cost, have facilitated the relegation of tedious algebraic tasks to the computer. Many
symbolic manipulation programs exist which can be used to derive the equations of motion
of the blade in explicit form. These equations can then be converted into FORTRAN code
for inclusion into a computer analysis program. Since the algebraic tasks are relegated
to a computer, it is fairly easy to retain as many terms as desired. Furthermore, the
equations can easily be rederived by the computer to reflect any changes in the aeroelastic
model.

In this study, explicit expressions for the distributed loads on the blade are derived us-
ing a special purpose symbolic computing facility consisting of a Symbolics 3650 dedicated
LISP machine running the commercially available symbolic manipulation software package
MACSYMA. The Symbolics machine is networked with a SUN 3/280 server on which the
numerical computations are performed. The mathematical expressions generated by
MACSYMA are ultimately expressed in a format suitable for their incorporation into the
FORTRAN computer program executed on the SUN machine. The Symbolics/Sun combi-
nation, first used in Ref. 38 to formulate explicit helicopter rotor/flexible fuselage equations

of motion. represents a powerful tool for deriving helicopter equations of motion.
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The description of the application of MACSYMA, and its implementation on a Symbolics
3650 machine, to derive the equations of motion used in this study is presented in Appendix
B. The symbolic manipulation procedure used in this study is very similar to the method-
ology used in Ref. 38. All equations and lengthy derivations presented in this study have
been derived using the approach described in Appendix B.

At the time the explicit expressions were formulated in this study the Symbolics/Sun
combination was required. This represented a limitation because such combinations were
not readily or easily available. However, since then, versions of MACSYMA have become
commercially available for Sun workstations and IBM PCs, thus allowing the symbolic
manipulations and numerical computations to be performed on a single machine. Fur-
thermore, the continuing trend toward faster computers with larger core memories has
lead to substantial decreases in execution times of MACSYMA. For example, MACSYMA
installed on a Sparcstation 10/41 runs five times faster than the speeds achieved on the

special purpose dedicated symbolics machine.

2.3 ORDERING SCHEME

In the derivation of the equations of motion for an isolated blade a large number of
higher order nonlinear terms must be considered. These terms arise due to the assump-
tion of moderate blade deflections which introduces many geometric nonlinear terms in the
expressions for the aerodynamic, inertial and structural forces and moments on the blade.
These nonlinear terms must be retained for an accurate stability analysis. But the number
of terms in the equations of motion of the blade can become too large if all of the nonlinear
terms are retained.

Previous research[6,11,38] has demonstrated that the equations of motion may be kept
to a manageable size while maintaining accuracy if an ordering scheme is used to sys-
tematically neglect the higher order terms. An ordering scheme consists of judiciously
assigning orders of of magnitude to the various terms encountered in the equations of

motion and then neglecting all terms of an order higher than some preselected order of
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magnitude. The highest order of magnitude retained in the expressions determines the

accuracy of the equations.
In this study the basis of the ordering scheme is a small dimensionless parameter ¢

which represents typical blade slopes due to elastic deformation. For helicopter blades ¢

is in the range

01<e<02

The ordering scheme used in this study is based on the assumption that
1+ 0@E) =1 (2.1)

i.e., terms of the order of O(¢2) may be neglected in comparison with unity. This ordering
scheme has been demonstrated[38,45,50,53] to yield equations of manageable size with
sufficient numerical accuracy for stability and vibratory hub load calculations.

The majority of the parameters appearing in the equations of motion represent dimen-
sional quantities; thus before orders of magnitude can be assigned, the various parameters
must first be expressed in nondimensional form. This is accomplished using the following

set of dimensional characteristic parameters:
[length] = R - rotor radius
[mass] = M, - mass of one rotor blade
[time] = é - inverse of the rotor speed

The orders of magnitude assigned to the parameters appearing in the equations of

motion are given next. The meaning of each of these parameters is defined in the list of

symbols.

x b M Pa
R" R’ (My/R)" (Mp/R3)’

W, Y, cosy, siny, ag,
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The orders of magnitude assigned to the various parameters listed above are consistent
with Refs. 38, 45, 50 and 53.

The systematic application of this ordering scheme in the derivation procedure yields
a set of explicit nonlinear equations of motion of manageable size, and sufficient accuracy.
The application of the ordering scheme in formulating the equations of motion using the
symbolic manipulation program MACSYMA is described in detail in Appendix B. Note that
the above ordering scheme is used with a certain degree of flexibility so as to enable the
retention of certain higher order terms which may be important but appear negligible in

light of the ordering scheme.
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24 COORDINATE SYSTEMS

Before deriving the differential equations of motion of the isolated hingeless rotor blade,
it is necessary to define the various coordinate systems used to define the position, ve-
locity and acceleration of arbitrary points on the blade and control flap cross-section. All
coordinate systems are rectangular, and are referenced by a number or letter. The “i”

coordinate system is defined by the set of mutually orthogonal unit vectors denoted by

A

x» €y and @-Zl, which lie along the x,, y, and z, axes, respectively.

e

The following coordinate systems are needed to formulate the equations of motion:

(1) The "0” system is an inertial reference frame with its origin at the hub center O.
The "0” system is oriented such that the gravitational vector is oriented along the negative
2 axis (see Fig. 5).

(2) The "1” system is an inertial reference frame also with its origin located at O.
However, the "1” system is pitched forward from the “0” system by the angle xg such that
the positive z4 axis points upward along the rotor shaft (see Fig. 5). The angle xg is the trim
rotor angle of attack. The "1” system represents the nonrotating or "fixed” system.

{3) The "2” system also has its origin at the hub center Oy but rotates with the blade
with an angular velocity Q about the z, axis, which is coincident with the z, axis {see Fig.
6). The "2” system represents the rotating reference.

{4) The "3” system also rotates with the blade but has its origin at the blade root, located
a distance e from the hub along the x, axis. Furthermore, the "3” system is preconed by
the angle Bp clockwise about y, axis such that the x4 axis is oriented along the undeformed
elastic axis of the blade (see Fig. 7). The "3” system represents the undeformed reference
frame used to define the undeformed position of the blade. The principal axes of the
undeformed blade cross-section are rotated by the pitch angle 65(x) counter-clockwise
about the x5 axis, as shown in Fig. 9.

(5) The “S” system also has its origin at the blade root, rotates with the blade, and is
oriented such that the xg axis and the x5 axis are coincident. However, the "S” system is
rotated by the angle Rq0s, about the xq axis. The "S” system is used to define the orien-

tation of torsional root springs used in the offset-hinged spring restrained blade model (see
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Fig. 2). The parameter R is an elastic coupling parameter used to vary the coupling be-
tween the flap and lead-lag motions. The angle 6, = 65(x = 0) is the geometric pitch angle
of the blade at the root.

{6) The "4” system is a blade attached coordinate system. Before deformation the "3"
system and "4” system are parallel. The “4” system bends and twists with the blade such
that the x, axis remains tangent to the deformed elastic axis at each point (see Fig. 8).
Furthermore, the principal axes of the deformed blade cross-section are rotated by the
pitch angle 65(x) about the x, axis, as shown in Fig. 3. The “4” system represents the de-
formed reference frame used to describe the position of the deformed blade.

(7) The "5” is also a blade attached coordinate system. The 5" system represents the
“4" system with the torsional deformation removed (see Fig. 9) such that the principal axes
of the deformed blade cross-section are rotated by the angle 6 + ¢, where ¢ is the elastic
twist. This system is particularly convenient for deriving the distributed aerodynamic loads
on the blade since the elastic pitching motion of the blade is explicitly represented in the
“5” system. This is described in greater detail in the derivation of the aerodynamic loads
in Chapter 3.

{8) The "C” system has its origin at the hinge point of the control flap, located a distance
Xy behind the elastic axis. The "C” system rotates with control flap deflection & such that
the X axis remains parallel to the x, axis, and the y. and z- axes remain aligned with the

principal axes of the control flap cross-section (see Fig. 11).

2.5 COORDINATE TRANSFORMATIONS
The coordinate transformations between the various coordinate systems listed above

needed in the formulation of the equations of motion are defined in this section.

"0” system to the "1” system

The transformation matrix from the "0” to the "1” coordinate system is given by:
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x1
N COS AR
€yr 0 = 0
N — sindg
€z1

where xg is the trim rotor angle of attack.

The inverse transformation is given by:

A

€0

N cos ag
eyo = . 0

A sin ag
€20

“1" system to the "2” system

. €xo
0 sinag A
1 0 €yo (2.2)
0 cosag N
€20
A
. €x1
—sinag
0 ey (2.3)
€os ag R
€z

The transformation matrix from the "1” to the “2” coordinate system is given by:

A
€x2

0

A
€22

The inverse transformation is given by:

R cos Y/
ey o = | siny
0

A
€21

72" system to the "3” system

cos Y
A _ . i
ey p = | —siny

The transformation matrix from the 2”7 system to the "3” system is given by:

€x3
1
A
ey3 = 0
A - BP
Z3

A
X €x1
sinyy 0 N
cosy O (< ey (2.4)
0 1 R
€21
A
€x2
—sing O0}})
cosy 0|4 ey {2.5)
0 1 R
€22
A
0 [3 €x2
p
1 0 |<&, (2.6)
0 1 N
€22

It has been assumed that the precone angle ﬂp is a small angle.

The inverse of the transformation represented by Eq. (2.6) is given by:
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"3” system to the "S” system
The coordinate transformation from the “3” to the "S” system is given by
A A
exs eX3
A 1 0 0 R
eysp =10 cos(Rclg,)  sin(Rchg,) €y3 (2.8)
A 0 —sin(Rebg,) cos(Rebg,) ||,
€zs €23
The inverse transformation is given by:
A A
€3 €xs
R 1 0 0 N
ey3 > = | 0 cos(Rebg,) - sin(Rebg,) |1 eys (2.9)
R 0  sin(Rgbg,) cos(Reber) | |
€23 €5

"3" system to the "4” system

The ”3” system is used to describe the orientation of the cross-section of the
undeformed blade located a distance x along the elastic axis, while the 4" system is used
to describe the orientation of the same cross-section after the blade’s deformation, con-
sisting of blade bending in two mutually perpendicular planes and twisting about the elastic
axis. In this study the elastic deformation of the blade is described completely in terms
of the lead-lag deflection v(x), the flap deflection w(x), and the elastic twist ¢(x). Thus the
transformation from the “3” system to the "4” system due to blade deformation can be de-
scribed by a unique sequence of angular rotations involving: the elastic twist angle ¢; the
lead-lag blade bending siope v.,; and the flap blade bending slope w.,.. The specific se-
guence of the rotations is important; the precise meaning of each of the three angles de-
pends on the order in which they occur. Therefore a particular rotational sequence must
be adopted and maintained in each stage of the formulation. The deformation sequence
used in this study is flap-lag-torsion. The rotation of the blade cross-section due to blade

bending and elastic twist is therefore described by: 1) a flap rotation by the angle w,,
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clockwise about the y, axis; 2) a lead-lag rotation by the ang'e v,, counter-clockwise about
the z5 axis which has undergone a rotation by the angle w,,; and lastly 3) a torsional rota-
tion by the twist angle ¢ counter-clockwise about the x, axis.

The transformation matrix associated with a rotation by the slope angle w,, counter-

clockwise about the y, axis can be expressed as[46]

1

[Tw,,] = 0
— W

X

w
0 (2.10)
1

o -0

X

when higher order terms are neglected.
The transformation matrix associated with a rotation by the slope angle v,, counter-

clockwise about the z; axis can be expressed as[46]

1 v, O
(ToJ=]-vx 1 O (2.11)
0 0 1

when higher order terms are neglected.
It should be noted that the small angle assumption has been used in the definition of

the transformations associated with the slopes v, and w.,. i.e.

cosv, = 1 + O . cosw, = 1+ O(?)

~

sinv, = v, + 0} | sinw, = w, + O

The above relations are consistent with the ordering scheme represented by Eq. (2.1).
The transformation matrix associated with a rotation by the angle ¢ counter-clockwise

about the x, axis is given by

1 0 0
[Te1=10 cos¢ sing (2.12)
' 0 —sing coso

The small angle assumption is made for ¢ only when convenient.
For the deformation sequence flap-lag-torsion, the coordinate transformation from the

"3” system to the "4” system is given by the matrix product
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where the transformation matrices (Ted. [(Tw, ] and [Ty, ] are defined by Egs.

(2.11) - (2.12). Performing the matrix multiplication yields:

A A
€x4 €3
1 Vix W,y
A . . A
€4 p = | —VixCOSP—w,sing cos¢  sing —v,w, cos ¢ €y3
R VSN —w,,cos¢p —sing cos¢+ v, w,sineg R
€24 €z3
(2.13)
The inverse transformation is given by:
A A
€x3 . . €x4
N 1 —v,cos¢—w,sing V.x Sin ¢ — w,, cos ¢ R
eys 7 = | Vix cos ¢ — sin ¢ €y4
R W,y Sin¢g — v, W, COs @ + v, W, sin @
€3 €24
(2.14)

"3” system to the "5” system
The “5” system represents the "4” system with the torsional rotation ¢ removed,

therefore the transformation matrix from the “3” system to the “5” system is given by:

A A
€xs €xa
s M
eys = [Tv,x][TW,,] ey3
A A
€5 €23

Carrying out the matrix multiplication yields:

A A

€xs5 €x3

A 1 V‘X W‘X A

ys 7 = | —Vvix 1 —w, v, eys (2.15)
A W 1 A

€zs €3

The inverse transformation is given by:
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A A
€ €xs

A 1 Vi =Wy ).,

€ya p = | Vix 1 0 €ys (2.16)
N W — W,V 1 N

€z €zs

"4” system to the "5” system
Since the "5” system represents the “4” system with the torsional angle ¢ removed, the

coordinate transformation from the “4” system to the “5” system is given by:

A A
€ys €x4
N 1 0 0 N
eys > = |0 cosdp —sing €y4 (2.17)
R 0 sing cos¢
A
€zs €74
The inverse transformation is given by:
A A
€x4 €xs
A 1 0 0 N
ey o = |0 cos ¢ sing eys (2.18)
N 0 —sing cos¢ R
€24 €25
"4” system to the "C” system
The transformation from the “4” system to the "C” system is given by:
A A
€xc €x4
N 1 0 0 N
€ p =0 cos é sind €y4 (2.19)
N 0 —sind cosd
€z¢ €24
The inverse transformation is given by:
A A
€x4 €xc
N 1 0 0 N
eyy P = 0 cosd —sind €yc (2.20)
0 sind cosd R
€24 €2c
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Chapter 11l

DISTRIBUTED LOADS ACTING ON THE BLADE

The distributed loads acting on the blade needed to formulate the equations of motion
of the isolated blade are developed in this chapter. The inertial loads are obtained using
D’Alembert’s principle, and a modified version of Greenberg’s[18] quasisteady aerodyna-
mic theory, including the effects of a trailing edge flap, is used to calculate the aerodynamic
loading. Gravitational loading is accounted for, and the structural damping is modeled as
being of the viscous type.

To formulate explicit expressions for the distributed loads acting on the blade, the po-
sition, velocity and acceleration of an arbitrary point on the blade or control flap must be
defined in terms of the blade degrees of freedom. Unfortunately, the modeling of the blade
flexibility differs considerably between the two blade models used in this study; the fully
elastic blade model is assumed to be flexible along the entire span, while the spring re-
strained rigid blade model is assumed to have all flexibility concentrated at the blade root.
Thus the kinematic assumptions, and associated blade degrees of freedom, are different
between the two blade models. The need to independently derive two separate sets of
expressions for the blade loads can be avoided, however, by recognizing that the
kinematics of the spring restrained blade model can be considered as a special case of the
kinematics of the fully flexible blade. Therefore, only the distributed loads acting on the
fully elastic blade model are formulated in this chapter. The procedure for obtaining the
distributed loads on the spring restrained blade mode! from these expressions is described

in detail in Chapter 4.
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3.1 BLADE KINEMATICS

In this study, the Euler-Bernoulli assumption is used, which implies that during bending,
plane cross-sections which are normal to the elastic axis before deformation, remain plane
after deformation, and will be normal to the deformed axis. Furthermore, it is assumed that
strains within the cross-section can be neglected. The Euler-Bernoulli hypothesis is con-
sidered to be a reasonable assumption when applied to a slender flexible beam made of
a linearly elastic, isotropic material, such as the rotor blade modeled in this study. The
assumption is certainly valid in the case of the spring restrained blade model, where the
blade is modeled as rigid outboard of the blade root.

The location of an arbitrary point on the blade cross-section before deformation is de-

scribed by the position vector
- A A A A
Rp=eex2+xex3+yOey3+Zer3

It should be recalled that it is assumed that the blade is initially straight in its undeformed
state. The coordinate pair (y,, Zp) represent the coordinates of an arbitrary point on the
cross-section of the undeformed blade relative to the elastic axis.

The Euler-Bernoulli hypothesis leads to the following expression for the position vector

of the same point after deformation:
- A A A A A A
b= eept(Xxtule,g+vey+wetyoey+2pe;y, (3.1)

where u, v, and w represent the displacement of a point on the elastic axis of the blade in
the /éx3 (axial), Qy3 (lead-lag), and /ézg (flap) directions, respectively. An expression identi-
cal to Eq. (3.1) is used in Refs. 38, 43, and 53 to define the position of an arbitrary point on
the deformed blade cross-section.

The coordinate transformation from the undeformed (“3” system) to the deformed ("4”
system) reference frame has been defined in Chapter 2 by Eq. {(2.13) for the deformation
sequence flap-lag-torsion. In the following sections, the position vector defined by Egq.
(3.1), together with the coordinate transformation given by Eq. {2.13), are used to formulate

explicit expressions for the distributed inertial, gravitational, damping, and aerodynamic
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loads on the blade. The evaluation of the distributed loads is separated into two compo-
nents: (1) the loads which would act on the blade cross-section if there was no control flap;
and (2) the loads due to the presence of a trailing edge flap. This decomposition is par-
ticularly convenient since the control flap extends over only a portion of the blade span,
and facilitates the integration of the distributed loads along the span of the blade.

The expression “blade loads” is used to identify the loads acting on the blade cross-
section without a control flap; and are denoted using the subscript "b”. Similarly, the ex-
pression “control flap loads” is used to refer the contribution of the control flap, which are
denoted by a “c” subscript. The two contributions are ultimately combined, and the sum
is referred to as the “total loads” acting on the blade. The blade loads and the total loads
are evaluated along the elastic axis of the deformed blade. The control flap loads are ini-
tially evaluated at the hinge axis, but are subsequently transferred to the elastic axis before
combining them with the blade loads. The loads are ultimately expressed in the "3” system
in which the equations of motion are formulated.

All of the expressions presented in this chapter, and throughout this study, have been
formulated explicitly using the symbolic manipulation program MACSYMA, executed on a
Symbolics 3650 dedicated LISP machine. A description of MACSYMA and its application
to the formuiation of the explicit expressions is presented in Appendix B. The ordering
scheme given by Eq. (2.1) is employed to neglect higher order terms in order to keep the
expressions from becoming too large. However, the ordering scheme is used with a cer-
tain degree of flexibility so as to enable the retention of certain higher order terms which

may be important but appear negligible in light of the ordering scheme.

3.2 INERTIAL LOADS

D’Alembert’s principle is used to obtain the inertial force and moment per unit volume
from the absolute acceleration of an arbitrary point on the blade or control flap cross-
section. The loads per unit volume are subsequently integrated over the cross-sectional

area to yield the inertial loads per unit span.
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From classical dynamics, the absolute acceleration of a point in a reference frame
which is both translating and rotating relative to an inertial reference frame is given[19]

by

a=Ry+ T +20xr + oxr + ox(@xr) (3.2)

where EO is the position vector of the origin of the moving reference frame relative to the
inertial reference frame,_l: is the position vector of an arbitrary point relative to the moving
reference frame, and w is the angular velocity of the moving reference frame relative to the
inertial reference frame. The time derivatives of EO are taken in the inertial reference
frame and its second time derivative represents the acceleration of the origin of the moving
reference frame relative to the inertial reference frame. The time derivatives of r are taken
in the moving reference frame and its first and second time derivatives represent the ve-
locity and acceleration, respectively, of the point in the moving reference frame.

In the present analysis, the “1” system with its origi;\ at the center of the fixed hub re-
presents the inertial reference frame; and the "2” system which is also centered at the hub,
but rotating with the blade about the z, axis (as shown in Fig. 6), represents the moving
reference frame. Since the origins of the "1” and the “2” systems are coincident, there is

no transiational motion of the “2” system relative to the "1” system; consequently

Ry=Ry=Ry = 0 (3.3)

The angular velocity in Eq. (3.2) can be identified as the angular velocily of the "2” system

about the z, axis given by
O =08, = Qe (3.4)

where Q is the rotational velocity of the rotor shaft. It is assumed that the rotor speed is

constant and the rotor shaft is rigid; therefore

gl
Il
ol
<
&
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Defining _I:p as the position vector of an arbitrary point in the rotating frame ("2” system),

and substituting Egs. (3.3)-(3.5) into Eq. (3.2), yields the following expression for the abso-

lute acceleration of the point:

p

Expressing ?p in the "2” system as

—_

a, = 1, + 20, x T, + Qeyyx (e, x

A A A
rp = rpx2 €0 + rpy2 ey2 + rng €,0

(3.6)

then substituting it into Eq. (3.6), carrying out the cross-products, and collecting the various

terms into x, y and z components, yields:

it A A A
ap = appepnt Apy2 €y2 t apz2 €2

where

a., = Fo,— 200, — Q°r
px2 — 'px2 py2 px2
Ay = Toyy + 200, — Q%r
py2 py2 *<Tpx2 = Tpy2
Apz2 = Tpz2

where the time derivatives of?p are taken in the "2” system.

(3.7a)

(3.7b)

(3.7¢)

Equations (3.7) are used in the following two sections to formulate the distributed

inertial loads acting on the blade and control surface cross-sections using D’Alembert’s

principle.
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3.2.1 Inertial Loads on the Blade
The derivation of the inertial loads acting on the blade presented below is very similar
to those of Refs. 38, 45, and 47. The position vector of an arbitrary point on the cross-

section of the deformed blade can be defined using Eq. (3.1) as:
- A A A A A A
o = @€+ (Xt uU)eg+Vesz+We s+ Yo, eys+ 2o €5 (3.8)

where the subscript “b” has been used to indicate a point on the blade cross-section. The
coordinate pair (ygy. Zgp) represents the coordinates of a point on the blade cross-section
relative to the elastic axis, and can be expressed in terms of the principal coordinates of

the blade cross-section (#, {,,) as follows (see Fig. 9)
Yoo = Mp C0s 0 — {psinfg (3.9a)
ZOb = L:b COS HG + "b sin GG (39b)

where 0 represents the total geometric pitch angle of the blade.
To obtain the absolute acceleration it is necessary to take the time derivatives Of_l:b in

the "2” system. This is facilitated by expressing ?b entirely in the "2” system:

- A M A
o = Tox2 €x2 t Toy2 €y + Myz2 €72

Transforming the unit vectors in Eq. (3.8) to the "2” system using the coordinate transf-

ormations defined Chapter 2, and collecting the x, y and z components yields:

Moxe = (X+ U+ €)= Wl — VooV — Zopw. + ) (3.10a)
foy2 = V+ Yop (3.10b)
rsz = W+(X+ u)ﬁp_y_Ob(Wux+ﬁp)Vxx+20b (310C)

where, for convenience, the following quantities have been defined:

Yoo = Yoo €OS ¢ — Zg, Sin ¢ (3.11a)

Zob Yoo SiN ¢ + Zg, COS ¢ (3.11b)
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The pair (Yop. Zgp) €an be interpreted as the coordinate pair (yq,. Zg,) €xpressed in the ”5”

coordinate system, i.e.
A A - A -— A
Yoo €ys + Zob €24 = Yob ©y5 + Zgp €25 (3.12)

Using Egs. (3.9) and (3.11), the pair (yg,, Zop) Can be expressed in terms of the principal

coordinates of the blade cross-section

Yoo = Mp €os(fg + @) — {, sin(fg + @) (3.13a)

Zop = {pcos(Bg + @)+ np sin(fg + @) (3.13b)

The first time derivative ofﬁr‘D in the “2” system can be expressed as:

-_ . A . A . A
To = Tpx2 €x2 + Moyo €yo + Fuz2 €5

where
foxz = U= Wy = Yool V. + (g + YWy + Bp)]

+ Zoo[(BG + $IV.x — Wiy (3.14a)
Foy2 = V= Zop(Og + ¢) (3.14b)
Fozz = W+ 0B, + Yool (B + @) — (W + Bl — Wpv.i]

+ 2Ob((E)G + (}})xwm + ﬁp)vq( (3.14C)

which were obtained by taking the time derivative of Egs. (3.10), and using the following

relations:
-70b = - zoo(go + ) (3.15a)

Zop = Yoolfs + ¢) (3.15b)

The previous expressions follow directly from Egs. (3.13).
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The second time derivative of_u:b in the "2” system can be expressed as

—_ . A .. A . A
"o = Toxz @x2 + Moy2 €y2 + Toz2 €22
where
Pbx? = U- Wﬂp
. - ) A . . .
+ Yool(8g + @) V.ix — Vi — 205 + dW. — (0 + $Xw.x + Bp)]

+ Zop[(0 + V(W + Bp) — Wy + 20 + ) + (O + 9)v.x] (3.16a)
foyz = ¥ Youlfc + ) — Zos(0G + 6) (3.16b)
Tppy = W+ i]/ip

+ Toul = Wog + Bl — 20y = oy + (B + $PWo + BV

+ 0+ )
+ Zopl 200 + PAW.x + BWox + A0 + WV — (O + b)

+ (0 + X + BoV.xd (3.16¢)

which were obtained by taking the time derivative of Egs. (3.14), and again making use of
Egs. (3.15).
The absolute acceleration of an arbitrary point on the cross-section of the deformed

blade can be expressed in the "2” system as
— A A A
ap = Apyy €y t+ Apyn €y F+ 30 €52
Substituting Egs. (3.10), (3.14) and (3.16) into Egs. (3.7) yields:

Bpyo = U— Why— 20V — Q°[(x + e + u) — wh,]
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+ Yool = (W + BpWox — 2,0, = Wy + (B + $ (o + B,y
+(0g+ )+ Q%]
+ Z0p[(0G + ¢V (Wax + Bp) = Wy + A0 + W + (B + DIV
+ 2006 + ¢) + Qowy + B,)] (3.17a)
Apyy = V+ 20(0 — wWp,) — Q%
~ Yool(Bg + &) + 200, + 200 + dXw., + Bp) + Q7]
— Zoo[(Bg + $) — 2Q(Bg + PV + 2QW,, ] (3.17b)
Apzp = W+ 0B,
+ Foul = (Wox + BplVox = 2,00, = WoVoy + (B + $(Woy + BV
+ (06 + )]
+ Zoo[ 2B + GX Wy + BN + 20 + G W.gv.x — (O + 6

+ (0 + G XW.x + BplVox] (3.17¢)

The distributed inertial loads on the blade are formulated using D'Alembert’s principle;
the inertial force and moment per unit volume acting on the blade cross-section are inte-
grated over the blade cross-section to obtained the inertial force and moment per unit span
acting on the blade. However, before proceeding it is convenient to define certain cross-
sectional integrals involving the principal coordinates of the blade cross-section. These

integrals are defined as follows:

j Pl dA = mpX, (3.18a)
A

b
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A

b

2
J Pollp dA = lygs
A

b

2
J Pels A = lygy
A

b

J Pty dA =0
Ab

(3.18b)

(3.18¢)

(3.18d)

(3.18.e)

where Eqs. (3.18b) and (3.18e) result from the assumption of a symmetric biade cross-

section. The quantity X, represents the offset of the blade cross-sectional center of mass

from the elastic axis and the pair lg, and l,,g3 represent the principal mass moments of

inertia of the blade cross-section.

The distributed inertial force acting on the blade is obtained by integrating the inertial

force per unit volume over the blade cross-section:

which can be expressed in the “2” system as

Evaluating each component of Eq. (3.19) using Eqgs. (3.17) yields:

Pibxe = — | Pplpxe dA
Ah

|

Piby2 = —J Prapy2 dA
A

b

P = —J pbgbdA
A

— IS A A
Pio = Pibx2 €x2 + Pioyo €y2 + Pioz2 €22

MeC2%0x + €) + 2OV + myB (W — wQ?) + my(uQ® — i)

2m, X, sin(Bg + X0 + ¢)

(3.19)

(3.20a)



= 2mQWp ) + my(vQ® — V) — 2m,Qu
+ MpXjp o8(0 + GIQAQ + 2V,,) + (g + ¢ + 228G + PXw.x + Bp)]
+ MpXyp Sin(fg + PN + d) + 20w, — 2B + PV, ] (3.20b)

Pibzz = —f Ppapzo dA

Ay

— MuUB, — mpWw
+ MpXjp COS(BG + @)V Wox + Bp) + W,V + WV — (B + $)]

+ MpXyp sin(0g + GO + ¢ — (B + GXW.x + BVl (3.20c)

The following integral definitions have been used in the integrations over the blade cross-

section:

f PpdA = my, (3.21a)
Ab

J‘ Pb yob dA = mbxlb COS(9G+ (b) (321b)
Ab

J pb ZOD dA = mbx'b Sln(96+¢) (3210)
Ab

The first integral represents the mass per unit span of the blade and the last two integrals
follow from Egs. (3.13) and (3.18).
The distributed inertial moment acting on the blade is obtained by integrating the

inertial moment per unit volume over the blade cross-section:
- A A -
Q|b = _j (yObeys + ZObezs)X pbab dA (322)
A

b

which can be expressed in the "2” system as:
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— A A A
Gip = Qibx2 €x2 + Qiby2 €y2 + Aibz2 €22

Transforming the unit vectors in Eq. (3.22) to the "2” system using the coordinate transf-
ormations defined in Chapter 2, carrying out the cross-product and collecting the various

X, ¥y and z components yields:

Gpx2 = ~ J. Po{Yoplabza + (W.x + BplV.xapya] — Zopapya} dA
Ab

Qiby2 = — J PolYoolbz2 — (Wix + Bplapxe IV x
Ab

+ EOb[(W'x + ﬁp)abn + abx2]} dA

Qibz2 =~ J- Pul = Yool Vix8oy2 + 3px2) — Zoo(W.x + Bplapya] dA
Ab

Substituting Egs. {(3.17) into the previous expressions and performing the integrations over

the blade cross-section yields:
Qioxz = MpXip €OS(BG + OI(VEZ — V)W, + Bolvey — W — 01B,]
+ myXyp sin(0g + ¢ )LV — V) + 200 — 2QW§, ]
— (Iugz + lusaXfs + &)
+ (lygz — huas) cos(Bg + @) sin(Bg + $ QA(Q + 2v,))
+ 206+ $XW.x + Bp)]
+ 2[hygg €050 + &) + Iyga sin’(Bg + $)IQ(Pg + dW.x — W, ]
+ [lugy SN0 + b) + gz oS (Bg + BIIL2V. Wy + V. W

+ (W + XV + V)] (3.23a)
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Quoyz = — MeXpp €080 + QX (W.x + Bp) + WiV,
+ mpXyp Sin(B + O)Q°(x + €) — (QPWh, + Ww,,) + 20V + (uQ? — )]
— (g2 + mssXbg + G WV.x
+ (g2 — Iwga) co8(0G + B) sin(0 + PI(V.xQ@® = V.,) — 20 + W, ]
+ (g €05°(0 + $) + Iuga sin“(Bg + )1[W. — Q3(W. + B)
— 2B + PXQ + V..)] (3.23b)
Qibzo = MpXip cOs(Og + ) — Q%(x + ) — 2Qv + (i — uQ?)
+(WQ? — W)B, + (V — v, ]
+ MpXip $In(g + ¢ XV — v Xw., + B,)
— (g2 + masXOc + YW+ Bp)
+ (lua2 — uas) cos(lG + ¢) sin(0g + )W, — 20 + GXQ + v.,)]

— [lygz Sin%(0g + &) + Iyga cos™(Og + S)I[V., + 20 + )W, ] (3.23c)

The following integral definitions, in addition to those represented by Eqs. (3.21), have been

used in the integrations over the blade cross-section:

J P Vo0 0A = lygy S0 + ) + lygs c0s2(0g + ) (3.24a)
Ab
Ab

Ay
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The above integrals follow from Egs. (3.13) and (3.18) .
Transforming the distributed inertial force to the "3” system, in which the equations of

motion are formulated, using the coordinate transformation defined in Chapter 2 yields

—_ A A A
Pib = Pibx3 ©x3 + Pibya €ya t+ Pipza €23

where

Pibxa = Piox2 + Bp Pibz2 (3.25a)
Pibya = Pipy2 (3.25b)
Piozz = — BpPibxe + Pivz2 (3.25¢)

Similarly, the distributed inertial moment acting on the blade can be expressed in the "3”

system as:

— A A A

Qb = Qibx3 €xa T Aiby3 €y3 + Aibz3 €23
where
Qbxa = Gioxe + Bp Aioz2 (3.26a)
Aipys = Qiby2 (3.26b)
Qipzzs = — Bp ioxe + Gibz2 (3.26c)

3.2.2 Inertial Loads on the Control Surface

The distributed inertial force and moment on the control surface is obtained using
D’Alembert’s principle in a manner similar to that used in calculating the distributed
inertial loads on the blade. The coordinates of an arbitrary point on the control flap

cross-section, relative to the elastic axis, can be expressed as (see Fig. 9}
Yo = Yu t+ Yoc (3.27a)

Zo = ZH + ZOC (327b)
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where
yy = — Xy cosfg (3.28a)
zy = — Xy sinfg (3.28b)

represent the coordinates of the hinge point on the blade cross-section relative to the
elastic axis. The quantity X,; represents the offset between the control surface hinge point
and the elastic axis, and is defined as positive behind the elastic axis. The pair (yo.. Zgc)
represents the coordinates of an arbitrary point on the control flap cross-section relative
to the "C” system, which is parallel to the "4” system but has its origin at the hinge point.
The coordinate pair can be expressed in terms of the principal coordinates of the control

surface cross-section (y., {.) as follows (see Fig. 11)

H

Yoo = M Cos(0g + 6)—{.sin(fg + d) (3.29a)

Zpe = {ccos(fg + &)+ ne sin(fg + &) (3.29b)

where § is the deflection angle of the control surface relative to the blade chord. It should
be noted that the origin of the principal coordinates of the control surface (i, {.) is located
at the control surface hinge point.

Substituting Eqs. (3.27) into Eq. (3.1) yields the position vector of an arbitrary point on

the control flap cross-section

A A A A
e =eept(xtu)egtveztwes,

A A N
+ (YH + Yoo) €ya + (21 + 2gc) €24 (3.30)

which can be expressed in the “2” system in the form:

A A I
fe = Yex2€xo t Meyp €yt Tz €52

Transforming the unit vectors in Eg. (3.30) to the "2” system using the coordinate transf-

ormations defined in Chapter 2 and collecting the terms into x, y and z components yields:

Fexo = (X+ e+ u)= wB,— (Y + YocVix — (T + ZgeXwoy + Bp) (3.31a)
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yc2
fega = (X+ U+ W — (Vi + YocXWox + BoW.x + Zy + Zoc (3.31¢)

where for convenience the following quantities have been defined:

Yy = Yy COs ¢ —zysing = — Xy cos(fg + @) (3.32a)
Zy = yuSing +zycosdp = — Xy sin(0g + @) (3.32b)
Yoc = Yoc €OS ¢ — Zoc sin ¢ (3.33a)
Zoc = Yoc Sin ¢ + 25 cos ¢ (3.33b)

The pair (Yo Zoc) Can be interpreted as the coordinate pair (ygc, Zoc) expressed in the 5"

system, i.e.
A A p— A -_— A
Yoc €ya T Zoc €24 = Yoc €ys T Zoc €25 (3.34)

Making use of Egs. (3.29), the coordinate pair {Yqc, Zy) can be expressed in terms of the

principal coordinates of the control surface cross-section, i.e.

Yoo = Nc cos(fg + ¢ + ) — {sin(0g + ¢ +9) (3.35a)

. cos(fg + ¢ + 8)+ nesin(fg + ¢ + 6) (3.35b)

Zoc

The time derivatives of_r‘C in the rotating reference frame (2" system) can be obtained
by differentiating Egs. (3.31) with respect to time. The first time derivative of_Fc in the "2”

system can be expressed as:

. A . A . A
fe = Toxa €2t Toyz €y + fezo €22
where

fexa = U— WS,

— TolO + b + BXW.y + B + Vo] + Zo[(Bg + ¢ + S — Wiy ]
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— Tul(BG + XWoy + Bp)+ Vo] + Zy[(B + Vo — Wiy ] (3.36a)
Feys = V= Zod0G + & + 8)— 20 + ¢) (3.36b)
Freo = W+ 0B,
+PoclBg + & +8) — (W + B — Wiy, ]
+ Zodbc + ¢ + SXW.y + BV
+ Tul(0G + ) — (Wax + BolVux = Wn¥ ]

+ 20 + PXW. + Bp)Vey (3.36¢)

The previous expressions were obtained by taking the time derivative of Egs. (3.31), and

using the relations

Yoo = — Zodlfg + & + 3) (3.37a)
Zoc = Yo+ +9) (3.37b)
Yu = —Zulbg+$) (3.38a)
Zy = ulbs+ ) (3.38b)

Equations (3.37) follow from Eq. (3.35), and Egs. (3.38) follow from Eqgs. (3.28).

The second time derivative of_r.C in the "2” system can be expressed as:

.. A . A .. A
fe = Tex2@x2 t Feya €y + Tez0 €22
where

e = U— W, + U
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+ Vool = Vo + (B + & + 6)2viy — Al + b + )W,y
— (B + ¢ + OXw.x+ By)]
+ Zo [2A0 + ¢ + SV + (B + ¢ + vy — W,y
+ (8 + ¢ + 6w+ B
+ Tul — V(O + $)Vix — 20 + g — (B + SXw. + By)]
+ Zu[ 206 + G W+ (B + O Wox — Wy + (B + §F(Wor + B)]
feyz = V= YodO + ¢ + 8Y — ZoilB + b + 8)
— Yl + ¢) - 2B + 6)
fepo = W+ 0B,
+ Yook = Wy + Bpl.x — 2W, 0y — WV + (B + & + 8 (W.y + B,y
+ (B + b+ 8)]
+ Zoo[20G + ¢ + SXW.x + Bplux + 20 + ¢ + S)w.,v,,
+ (B + & + SN Wi+ By — (B + ¢ + 8F]
+ THL = Wy + Bl = 2W, 0y — Wy + (B + YWy + By
+ 0+ 9]
+ Z4[20G + BXW.x + Bk + 28 + G W,V + (B + GXW.g + BplV.y

— (B + 9]
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The previous expressions were obtained by taking the time derivative of Eqgs. (3.36), and

making use of Eqgs. (3.37) and (3.38) once again.
The absolute acceleration of an arbitrary point on the control surface cross-section can

be expressed in the "2” system as:

_

A A A
Ac = Ao By T Acy2 €y2 + ac2 €22
Substituting Egs. (3.31), (3.36) and (3.39) into Egs. (3.7) yields:

Ao = U — W, — 20V — Q’[(x + e + u)— wB,]
+ Vool = (Wox + Bl ox = 2W. 0 — WV + (B + & + 3w + BplVx
+ (B + ¢ +0)+ Q%]
+ Zoc[(0 + ¢ + 3V (Wax + Bp) — W + 20 + ¢ + SNy
+ (B + ¢ + W+ 20+ ¢ + )+ QX(w, + B)]
+ TRl — (Way + BV — 200, — Wy v,y + (O + 6wy + BoVay
+ (B + &)+ Qv ]
+ 23l + Y (Woy + Bp) — Wy + 206 + )y + (B + PV
+2Q(0g + ¢) + QAw. + B,)] (3.40a)
8y, = V4 20U — Whp) - Qv
— Yol + ¢ + 6 + 200, + 200 + b + dXw. + o) + Q7]

~ Zoclfg + & + 8) = 20 + ¢ + S)v,, + 2., ]
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— V(b + ¢ + 220, + 220 + X w.p + Bp) + Q7]
—Zul(Bg + §) — 20 + .y + 20w ] (3.40b)
ac0 = WHUB,
+ Fool — (Wax + Bplix = 2,0 = Wy + (B + § + 8 (Wo + BV
+(0g+ ¢ +9)]
+ 70 [0 + ¢ + X Wi+ BWox + 206+ ¢ + S, v,
+ (B + ¢ + SXW.+ BV — (g + ¢ + 6)°]
= il — (Wog + By — 2W, ¥y — Wi + (B + )W+ BV
+ (b + )]
= Z4[ 200 + GWAWox + Bp) + A0 + P,V

+ (B + $XW. + Bl — (O + 6] (3.40c)

The absolute acceleration of an arbitrary point on the control surface cross-section is
used to obtain the inertial force and moment per unit volume from D’Alembert’s principle.
These inertial loads per unit volume are subsequently integrated over the control surface
cross-section to obtain the distributed inertial loads acting on the control surface. But be-
fore proceeding it is convenient to define certain cross-sectional integrals of the control

surface principal coordinates. These integrals are defined as follows:

J PclcGA = —mX, (3.41a)
A

4
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f pl.dA =0 (3.41b)
A

(3

2
f PcMcdA = lycs (3.41¢)
AC

2
f pclcdA = lyco (3.41d)
AC
f PclclcdA =0 (3.41¢)
A

C

where Egs. (3.41b) and (3.41e) result from the assumption of a symmetric control surface
cross-section. The quantity X,. is the offset of the mass center of the control surface
cross-section behind the hinge point, and the pair lyc, and ly 3 represent the principal
mass moments of inertia of the control surface cross-section about the hinge axis.

The distributed inertial force is obtained by integrating the inertial force per unit volume

over the control surface cross-section:

P = - j pea. dA (3.42)
A

<

which can be expressed in the "2” system in the form

_— A A A
Pic = Picx2 €x2 T Picy2 &y2 + Picz2 €22

Carrying out the integration for each component of Eq. (3.42) using Egs. (3.40) yields:

Piexe = — [ Pclcxe dA
JA

4

= mQ%(x + &)+ 2m Qv + m B (W — wQ®) + m(uQ? — i)
+2m X, Q2 sin(fg + ¢ + 8XBg + ¢ + 3)

+2m X Q sin(0g + ¢ XOg + ¢) (3.43a)
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Piey2 = _J. Pcacyr dA
A

C

2m QWS + m(vQ? — V) — 2m Qu

— M X, cos(8g + ¢ + O)[(Bg + b + 5 + QQ + 20.,)
+ 200 + ¢ + SYw., + B,)]
— MXi SinBg + ¢ + OB + ¢ + ) + 20w,
—20(0 + ¢ + 5)v.,]
— McXyy €088 + $)(BG + ) + QQ + 2V,,) + 28 + $Xw. + B,)]

— mXy sin(Bg + ¢)(Bg + ) + 2Qw,, — 2005 + d)v., ] (3.43b)

Picz2 = —j Pcdczo dA
AC

— mw — muf,
+ MXie €os(0 + ¢ + (B + ¢ + 8) = (W + By — 2W,, 0,
— W.,V.i]
— MXic sinfg + ¢ + (B + ¢ + Y — (Bg + ¢ + SXw. + Bpvox]
+ McXyy cos(0G + G)(Bg + ¢) — (Wox + By — 20,0, — Woyv ]

- mcXy, sin(fg + )0 + ) — (O + YW, + Bolv,,] (3.43c)

The following integral definitions have been used in the integrations over the control sur-

face cross-section:
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pcdA = mg (3.44a)

AC

j PcYoc dA = — m X cos(fg + ¢ + 9) (3.44b)
AC

j PcZoc dA = — m X sin(fg + ¢ + ) (3.44c)
AC

The first integral represents the mass per unit span of the control surface and the last two
integrals follow from Eqgs. (3.35) and (3.41) .
The distributed inertial moment about the control surface hinge point is obtained by

integrating the inertial moment per unit volume over the control surface cross-section:

—= - A _ -
qin = — f (yOc eys + ZOC ,e\zs) X pcac dA (345)
A

<

Transforming the unit vectors in Eq. (3.45) to the "2" system using the coordinate transf-
ormations defined in Chapter 2, carrying out the cross-product, and collecting the x, y and

z components yields:

— A A A
Gih = Oihx2 €x2 + Qihy2 €y2 + Ainz2 €22

where
Qihxz = — f pei¥oclacz + (Wi + Bp)v-xacyQ] - EOcacyz} dA
AC
Qihy2 = — f PctYoclacza — (W + Bp)acxz]v»x
Ab
+ 2Oc[(wvx + Bp)acz2 + acx2]} dA
Qhz2 = — f pel — YodVix@cyz + acx) — Zpcacy] dA
A

c
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Substituting Egs. (3.40) into the previous expressions and performing the integrations over

the control surface cross-section yields:
Qinxe = MXic Cos(Bg + ¢ + )W + B, — (VO — VYWux + Vo]
+ MeXi sin(Bg + ¢ + )V — V) + 20w, — 2Q0]
— (o + ImeaXbg + ¢ + 8)
+ (lmcz = Imca) cos(8g + @ + ) sin(Bg + ¢ + O)QQ + 2v,,)
+ 2B+ ¢ + 6wy + )]
+ 2[Iygcp €OS°(Bg + ¢ + 8) + lycs Sin%(B + ¢ + 8)IQL — Wy
+(0g+ @ + SWy]
+ [lyca SINYOg + ¢ + 8) + lyyes cOs2 (B + ¢ + 8)][2V, Wy
VoW (W + BV + 27V,
= MX XPAQ + 2v,,) cos(fg + p) sin(0g + ¢ + 8)
— mX, X8 + ¢) cos &
— mX Xl + @) sin & (3.46a)
Qiny2 = McXic cos(0g + ¢ + SXQ(W., + Bp) + Wlv.,
+ mcXie sin(0g + ¢ + 8) — QAx + ) + (W, + fw2?)
+ (U — uQ?) — 20v]

— (lyca + ImcaXbg + ¢ + v,y
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¥ (lyca — Iucs) Cos(Bg + & + 8) sin(Bg + ¢ + S)[(vV., Q% — V.,)
— A8+ ¢ + )., ]
+ [lycy €050 + ¢ + 8) + lycs Sin*(0g + ¢ + 8)][W.x
— Q%W+ By — A+ Vo XOs + d +6)]
— 2m X, X0 + &) sin(dg + ¢) sin(fg + ¢ + 6) (3.46b)
Qinza = McXic COS(OG + ¢ + H[QAx + e) + (uQ? ~ )
+ 200 + (V022 — Wy + (W — W), ]
+ M X\ SO + ¢ + 0wy + B XvQ — V)
— (hca + ImcaXBg + & + SXw.+ B)
+ (lmca — Imca) cos(fg + @ + 8)sin(8 + ¢ + S)[W 4
—2AQ+ V., X0 + ¢ + )]
~ [lyca SIN’(0g + & + 8) + lyca cosX(Bg + ¢ + $)I[V.x
+ 205+ ¢ + Sw,]

+ 2m X, XpQ0g + d)sin(0g + ¢) cos(fg + ¢ + 8) (3.46¢)

The following integral definitions, in addition to those represented by Eqs. (3.44), have been

used in the integrations over the contro! surface cross-section:

j P VR A = lycy SIn%Bg + & + 8)+ yca cos’(B + ¢ + 8) (3.47a)
A

4
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f Pec ch dA = lyey cosQ(BG + ¢ +90)+ yes sinQ(OG + ¢ +9) (3.47b)
AC

f PcYoc Zoc 9A = (hyca — luco) cos(@g + ¢ + 6) sin(fg + ¢ + ) (3.47¢)
A

C

The above integrals follow from Eqs. (3.35) and (3.41) .

The distributed inertial loads acting on the control surface can be transformed from the
"2” system to the "3” system, in which the equations of motion are formulated, using the
appropriate coordinate transformation defined in Chapter 2. The distributed inertial force

acting on the control surface can be expressed in the "3” system as:

— A A A
Pic = Picxa €x3 t Picya €y3+ Picz3 €23

where

Piexs = Piexe + Bp Picz2 (3.48a)
Picys = Piey2 (3.48b)
Piczz = — BpPicxa + Picz2 (3.48¢c)

Similarly, the distributed inertial contro! surface hinge moment can be expressed in the ”3”

system as:

- A A A

Qin = 9hx3 €x3 t Qinya €y3 + Ainza €23
where
Uirxa = 9inxe + Bp Ainz2 (3.49a)
Gihy3 = Qihy2 (3.49b)
Qhzs = — BpUine + Qinz2 (3.49¢)

The distributed inertial moment about the elastic axis of the blade due to the control

surface inertial loads is given by
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_ - A _ A -
Qc = Ain+ (Y eys + Zy €25) X Py (3.50)

Transforming the unit vectors in the above expression to the "3” system using the appro-
priate coordinate transform defined in Chapter 2, carrying out the cross-product, and col-

lecting the various terms into x, y and z components yields:

_ A A A
Gic = Qicx3 €xat Gicy3 ©ya + Qicza €23

where

Qexa = (= Vix Wi ¥ + EH)pk;y:; + YH Piez3 (3.51a)
Aieys = (= Vix Wi Vi + Zi)Picxa + (Vix Y + Wax Zp)Picza (3.51b)
Qicza = — YH Pioxa — (Vi Vi + W Z1)Pieya (3.51¢)

3.3 GRAVITATIONAL LOADS
The distributed gravitational loads are obtained by integrating the gravitational force
and moment per unit volume over the cross-sectional area. The gravitational vector is

oriented along the negative z, axis, i.e.
—- A
g = — gey (3.52)

where g is the acceleration due to gravity. Transforming ‘A?zo to the "2” system using the

coordinate transformations defined in Chapter 2 yields:

—- A A A
g = Uxexxt gya€ynt 9z2 €z

where

Ox2 = — gsinxgcosy (3.53a)
dyp = gsinxgsiny (3.53b)
9z = —gcCosiug (3.53c)
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The gravitational vector defined above is used in the following sections to obtain the dis-

tributed gravitational loads on the blade and control surface.

3.3.1 Gravitational Loads on the Blade

The gravitational loads per unit span acting on the blade are obtained by integrating the
gravitational force and moment per unit volume over the blade cross-section. The deriva-
tion presented below is similar to those of Refs. 38 and 50. The distributed gravitational

force on the blade is given by:

Pep = f Pp g dA (3.54)

Ab
which can be expressed in the "2” system as:
—_ A A A
Peb = Pcox2 €x2 1 Poby2 €y2 + Pgbz2 €22

Evaluating each component of Eq. (3.54) and making use of Egs. (3.53) yields:

Pobxe = | PbIxedA = — mygsin xg cosy (3.55a)
Ab

PGby2 = J. Pb9yo dA = mygsin xg siny (3.55b)
Ab

Pobz2 = | Pb9z2dA = — mpgcosag (3.55¢)
Ab

The gravitational moment per unit span about the elastic axis is obtained by integrating

the gravitational moment per unit volume over the blade cross-section

- p— A — A —
AGp = f (Yoo €ys + Zgp €25) X pp g dA (3.56)
Ab
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Transforming the unit vectors in Eq. (3.56) to the "2” system using the coordinate transf-
ormations defined in Chapter 2, performing the cross-product, and collecting the various

terms into x, y and z components yields:

— A A A
96b = AGbx2 €x2 T Geby2 €y2 T Aobz2 €22

where

debxe = f Po (Yoo [9z2 + (W + BpVox 9yo] — Zgp 9y0} A

Ay

quy? = J. Pb {yOb [922 - (va + ﬂp) gx2]vvx + EOb [(va + ﬁp) 9z2 t sz]} dA
Ay

dgbze = J. Po [ — Yoo (VixBy2 + 8x0) — Zop (Wi + Bp) 9] dA
A

b

Substituting Eqs. (3.53) into the previous expressions and performing the integrations over

the blade cross-section yields:

Aooxe = — MpGXp cOs(Ag + P cos ug — (W + BV sin ag siny]

- mugX, sin(fg + ¢) sin xg siny (3.573)
dopyz = — MpGXjp COS(Ag + @[ cos xg — (W, + Bp) sin 2 cos Y ]v,,

— mpgX, Sin(Bg + PI(w. + ﬁp) COS A + Sin 2z COS Y] (3.57b)
Qabzz = — Mp@Xp cos(g + @) sinag(v,, siny — cos i)

— mpgX,, sin{fig + ) sinxg siny (3.57¢)

The integral definitions represented by Eqs. (3.21) have been used above.

The distributed gravitational loads acting on the blade can be transformed from the "2”
system to the “3” system, in which the equations of motion are formulated, using the co-
ordinate transformation defined in Chapter 2. The distributed gravitational force acting on

the blade can be expressed in the “3” system as:
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— A A A
Pcb = PGbx3 €x3 T Pobya €y3 + Pgbza €23

where

Pobxa = Pobxz + Bp Pobz2 (3.58a)
Pcoys = Pgby2 (3.58b)
Pobzz = — Bp Pooxe + Pobze (3.58¢)

Similarly, the distributed gravitational moment acting on the blade can be expressed in the

"3” system as:

— A A A
AGb = YGbx3 €x3 t AGby3 €y3 + Aobza €23

where

AGox3 = dcbx2 + Bp Aebz2 (3.59a)
dGbys = Ycby2 (3.59b)
dGbzz = — Bpdobxe + Gobz2 (3.59¢)

3.3.2 Gravitational Loads on the Control Surface

The control surface gravitational loads per unit span are derived in a manner similar
to that used in calculating the distributed gravitational force and moment on the blade. The
gravitational force per unit span of the control surface is obtained by integrating the

gravitational force per unit volume of the control surface over its cross-section, i.e.

Poc = f pc g dA (3.60)
A

<

which can be expressed in the "2” system in the form:

—_ A A A
PGec = PGex2 €x2 + PGey2 €y2 + Pgezz €22
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Performing the integration for each component of Eq. (3.60) making use of Egs. (3.53) yields:

PGex2 = f PcOyx dA = — m.gsinxg cosy (3.61a)
AC

PGey2 = J Pc9y2 dA = m g sin xg siny (3.61b)
AC

PGez2 = f Pc 9z dA = —m.gcos xg (3.61¢)
A

The gravitational moment per unit span about the hinge point is obtained by integrating
the gravitational moment per unit volume about the hinge over the control surface cross-
section

- A A R
doh = J' (Yoc €ys t 20c €,5) X pc g dA (3.62)
A

C

Transforming the unit vectors in Eq. (3.62) to the "2” system using the coordinate transf-
ormations defined in Chapter 2, performing the cross-product and collecting the various
terms into x, y and z components yields:

A

— A A
dch = Uohx2 €x2 T Qghy2 €y2 + AGnz2 €22

where

Achx2 = f Pc {VOC [922 + (Wxx + ﬁp)Vu( gy2] - ZOc ng} dA
A

(o

thyQ = f Pe {VOC [922 - (W~x + 3p) gx2]vvx + EOc [(va + ﬁp) 9z2 t 9x2]} dA
A

C

AGhz2 = f Pl = Yoo (V-x 9yo + 9y0) = Zoc (Wox + B5) gyp ] dA
A

c

Substituting Egs. (3.53) into the previous expressions and performing the integrations over

the control surface cross-section vields:
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OGhxe = McGX| €os(0g + ¢ + 8)[ cos ag —~ (W, + BV, Sinag siny]

+ m.gX,. sin(fg + ¢ + ) sinag siny (3.63a)
dghy2 = Mc9X|c cos(B + ¢ + 3)[ cos ag — (W, + B) sin ag cos Y ]v.,

+ mgXc sin(fg + ¢ + 6)[(w,, + B,) cos ag + sin ag cos /] (3.63b)
Ognzz = McAXc coS(fg + ¢ + 8) sin ag(v., siny — cos )

+ mgX, sin(@g + ¢ + &) sinxg siny (3.63c)

where the integral definitions defined by Egs. (3.44) were used in the integrations over the
control surface cross-section.

The distributed gravitational loads acting on the control surface can be transformed
from the "2” system to the "3” system, in which the equations of motion are formulated,
using the coordinate transformation defined in Chapter 2. The distributed gravitational

force acting on the control surface can be expressed in the “3” system as:

—_ A A A
PGc = PGexa €x3 T PGeys €ya + PGezs €23

where

PGexs = Poexe + Bp Pacz2 (3.64a)
PGeys = Poey2? (3.64b)
PGeza = — BpPcexe + Paez2 (3.64c)

Similarly, the distributed gravitational contro! surface hinge moment can be expressed in

the “3"” system as:

—_ 2 A A
AGh = 9chx3 €x3 T Aohys €ya + AGnza €23
where

dohxs = Gonxe T Bp Agnz2 (3.65a)
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AGhys = Ychy2 (3.65b)
AGhzza = — Bp AGhx2 T QGhz2 (3.65¢)

The distributed gravitational moment about the elastic axis of the blade due to the

control surface gravitational loads is given by

~ - A A -
doe = don t+ (Yh €ys + 21 €,5) X Pge (3.66)

which can be expressed in the “3” system as

—_ A A A
Acc = Aeexa x3 + Ageys €ya + AGeza €23

where

Agexs = (= Vi Wi Yh + ZyPgeya + YH Pocza (3.67a)
Aoeys = (= Vi Wi Vi + ZedPgexs + (Vix Y + Wix ZnPgez3 (3.67b)
Aocza = — YH PGexa — (Vo Yi + Wix Zn)Paeys (3.67¢)

3.4 AERODYNAMIC LOADS

In this study, an appropriately modified version of quasisteady aerodynamic theory,
based on Theodorsen’s unsteady aerodynamic theory, is used to predict the aerodynamic
forces and moments experienced by a rotor blade in forward flight. A detailed description
of the modification of Theodorsen’s unsteady aerodynamic theory to include the effects of
a time-varying free stream velocity and variable inflow is presented in Appendix A. The
expressions developed in that appendix, combined with the quasisteady assumption, are
used in this section to develop explicit expressions for the aerodynamic forces and mo-
ments acting per unit span of the blade and the control surface.

Theodorsen’s unsteady aerodynamic theory[52] is a classical two-dimensional strip
theory which describes the aerodynamic loads experienced by a thin airfoil-aileron com-

bination performing small simple harmonic oscillations in a wuniform stream of
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incompressible flow. it is well known[11] that Theodorsen’s theory was developed for
fixed-wing applications and is not suitable for rotary-wing studies. Therefore,
Theodorsen’s theory has to be modified to include the effects of a time-varying free stream
velocity {due to blade dynamics) and variable inflow, present in rotary-wing applications.

Greenberg’s unsteady aerodynamic theory[18], which represents a modification of
Theodorsen’s unsteady aerodynamic theory to include the effects of a constant component
of the angle of attack and a time-varying free stream velocity, has been used frequently
as the basis for generating the required approximate aerodynamic loads for rotary-wing
aeroelastic studies. However, Greenberg’s theory does not account for the effect of a flap.
Therefore, Theodorsen’s model for a wing-flap combination has been modified in a manner
similar to Greenberg for use in this study. The derivation of the modified expressions is
presented in Appendix A. It should be noted that the expressions derived, reduce to
Greenberg’s theory in the absence of the flap, and no inflow.

Theodorsen separates the aerodynamic loads into a noncirculatory and circulatory
component. The noncirculatory portion of the flow results from the pattern of sources and
sinks along the airfoil chord such that the two dimensional boundary condition that the
airfoil chord is a streamline of the flow is satisfied. The circulatory portion of the flow re-
sults from the distribution of vortices on the airfoil chord and counter-vortices along the
wake to infinity such that Kutta’s condition at the trailing edge is satisfied. Theodorsen
assumed that both the noncirculatory and circulatory lift act normal to the resultant flow.
However, for mathematical convenience, it is assumed in this study that the noncirculatory
lift acts normal to the airfoil chord. The reason for this assumption is explained later in this
chapter. The effects of parasitic drag, which is assumed to act parallel to the resultant

flow, are included.
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3.41 Quasisteady Aerodynamic Loads

The modified expressions for the total noncirculatory and circulatory lift, pitching mo-

ment and hinge moment for a blade with a trailing edge flap are given by Egs.

(A.25)— (A.30) of Appendix A. It is believed that these expressions are new and that the

present study is their first application. These are two dimensional loads per unit span.

These expressions, including the quasisteady assumption (i.e. C(k)

1), are presented

below. In these expressions, the lift is defined positive up and the pitching and hinge mo-

ments are defined positive nose up.

The total noncirculatory lift per unit span is given by:

Lne = %pAao(cb + Ccs)Q{UT(GG +) + Ul + ¢)
— [Xay-— —;—(cb + 2¢5) 06 + ¢) — Up

. - Ty = Ty
o [o]
The total circulatory lift per unit span is given by:

Lc = %pAao(cb + CeUr{Ur(fg + ) — Up
+ [%‘(Cb + 3ces) = Xa)(0g + 6)

Tio 1 Ty .
+ 2——=Uqd + ~H2¢cy, + 3c 0}
a, 4 a,

The total noncirculatory pitching moment is given by:

1 2142
Mync = §9A30(0b+ Ces) U0 + ¢) — UgUp

_ [Xf\ - %{cb + QCCS)]Q@G +é)- 3—12(% + Ccs)Q(BG + )

+ [Xp = 4o+ 2e)][Url6 + §) = Up]
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T T :
— 22078 — —Hop + ces)Urd
o] [¢]
Tg 3 Ta oo ;
+ [a—o(cb + CCS) + (?Cb - 2XA)¥](UT5 + UTé)

1 T 3 LR
+ oo+ ccs)[a_;(chr Ces) + (3G = Xl -10) (3.70)
The total circulatory pitching moment per unit span is given by:

1
Myc = 5PaaCp + Ces)Ur{Unlbg + ¢) — Up

1 . . T
+ [5{Co + 3ccs) = XaX0g + ¢) + 2%’“&
Ti, . 1
+ %(2% + 8Ceq) a5} [Xn ~ {Co + 255)] (3.71)
The total noncirculatory hinge moment per unit span in given by:
1 20,2 ; 1 2.7 i
MhNC = — 'Z—pA(Cb + CCS) \UTTJ(GG + ('»‘)) + ?T13(Cb + CCS) (HG + ¢)
- —12—{2T9 + TyXCp + ColUr(Bs + &)

+ %(Cb + Ccs)T1[UP - UT(OG + ¢)] — U7UpT,

Ts

2 1 2: T To,
+ 2UT==0 — —H{cp + Cg) 05— — (Cp + Cs ) z—U1d} (3.72)
aO 2 aO aO

The total circulatory hinge moment per unit span is given by:

1
Mic = = Palco + ces/Ur{Us(fg + $) = Up
1 . .
+ [—2—(cb + 3ccs) — XpdO0g + )

wo 10y sy Toe, 4 3e iy T., - T 3.73
g U0 + {205 + 3Ccs)5 0 HT1a = Ta) (3.73)
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The parasitic drag per unit span on the airfoil and control flap is given by

) (3.74)

Cdo
o

1 2 2
D = —paadey + cesXUt + UpX—3

The velocities Uy and Up represent the “tangential” and “perpendicular” air velocities,
respectively, sensed by the blade cross-section due to forward flight, inflow and blade dy-
namics. In this study U; is defined as the velocity component tangent to the blade’s plane
of rotation, and U, is is defined as the velocity component perpendicular to Uy, and lying
in the plane of the blade cross-section (see Fig. 12). As shown in Fig. 12, the velocity
component U makes an angle of x = O+ ¢ witr; the blade chord. In Appendix A the angle
« was defined as the local angle of attack of the blade cross-section. The is also the angle
between the blade chord and the y5 axis. For this reason the “5” coordinate system, which
represents the "4” (deformed) coordinate system with the torsional deformation of the
blade ¢ removed, is selected as the most appropriate coordinate system in which to
identify Uy and Up.  This interpretation has been used in many rotor blade
studies[38.50,45,53] to define the local velocity components.

Therefore the tangential air velocity can be identified as:

Ur = —Vays (3.75a)

and the perpendicular air velocity can be identified as:

Up = —Vas (3.75b)

where Vs and Vj,5 represent the y and z components, respectively, of the total air ve-
locity sensed by the blade in the "5” system due to forward flight, induced inflow and blade
dynamics. it should be noted that, due to the pitching motion of the blade, each point on
the blade cross-section senses a different total air velocity. Therefore, in this study, the
tangential and perpendicular air velocities are defined as the velocity components at the

elastic a:is of the blade cross-section.
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If _\;AF represents the free stream air velocity due to forward flight and induced inflow
and VEA represents the velocity of a point on the elastic axis of the deformed blade due to

its motion, then the total air velocity seen by the deformed blade can be expressed as:

For a rotor blade in forward flight with velocity V¢

- A A
VAF = QR(‘Lle)d — /.ez1) (377)
where
_ Vgcosxg . Vesinxg+v
T OR “TTTOR

are the advance ratio and inflow ratio, respectively. Transforming the free-stream velocity
to the rotating ("2” system) reference frame using the coordinate transformations defined

in Chapter 2 yields:
- A . A . A
Var = QR(u cosy e — usiny ey — /. €42) (3.78)

The velocity of a point on the elastic axis of the blade due due to forward flight and the
motion of the blade can by found from classical dynamics. The absolute velocity of a point
moving in a reference frame which is translating and rotating relative to an inertial refer-

ence frame is given by

V=Ry+T+oxr (3.79)

where FQO represents the position vector of the origin of the moving reference frame relative
to the inertial reference frame, T represents the position vector of an arbitrary point in the
moving reference frame and w is the angular velocity of the rotating frame relative to the
inertial reference frame. The time derivative of Eo is taken in the inertial reference frame

and represents the velocity of the origin of the moving reference frame relative to the
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inertial reference frame; whereas the time derivative of T is taken in the rotating reference
frame and represents the velocity of an arbitrary point in the moving reference frame.

As stated previously the “1” system represents the inertial, hub-fixed reference frame
and the "2” system, which rotates with the blade, represents the rotating reference frame.
Making use of Eqs. (3.3) and (3.4) once again, together with Eq. (3.79), the absolute velocity

of an arbitrary point in the rotating reference frame {"2" system) can be expressed as:

=T, + Q& xT, (3.80)

Yp p

where again _I:p is used to represent the position vector of an arbitrary point in the "2”

system.
Defining 7EA as the position vector of a point on the elastic axis, then using the above
relation, the absolute velocity of this point can be expressed as:
VEA = _':EA + Q/e\ZZ X_I:EA (381)

where the time derivative of?EA is taken in the "2” system.

The position vector?EA can be obtained by substituting yg = z, = 0 into Eq. (3.1) to yield
Tea = €+ (X+ €)Rg+ Vet Wess (3.82)

Before substituting the above expression into Eq. (3.81), it is convenient to express _r'EA
entirely in the “2” system. Transforming the unit vectors in Eq. (3.82) from the "3” to the

"2” system using the coordinate transformation defined in Chapter 2 yields:
?EA = (x+e+u—wpy) /éxz +v gy2 + [(x+ u)Bp + w] ?322 (3.83)

Therefore the time derivative of?EA in the "2” system can be expressed as:

Substituting Egs. (3.83) and (3.84) into Eq. (3.81) and performing the cross product yields:

Vea = (U—WB, — QV) ey,
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+[V+Qe+x+u—wh)le,

+ (0B, + W) &y (3.85)

The total air velocity seen by a point on the elastic axis of the deformed blade in the "2”

system is obtained by substituting Eq. (3.78) and (3.85) into Eq. (3.76) to yield:
VA = (uQRcosy — u+ wf, + Qv) /éx2
+[—uQRsiny —v—-Q(x+ e+ u—wﬁp)]/éy2

— (AQR + 0B, + W) &5 (3.86)

To identify the tangential and perpendicular air velocities it is necessary to express the
total air velocity V, in the "5" system. Transforming the total air velocity given by Eq.

(3.86) to the “5” system using the coordinate transformations defined in Chapter 2 yields:

- A A A
Va = Vaxs €xs + Vays €ys + Vazs €55

where
Vaxs = — U+ Qv—vv, —Q(x+ e+ ul, — ww, — 2QR(w, + f,)

+ nQR cos Y — uQdRv,, siny (3.87a)
Vays = —Qx+e+u)—Quv, + QwB, — v — uQRv. cos

— uQR siny (3.87b)
Vazs = — W =Qvw, + f,)— 2QR — QR(w,, + ) cos i (3.87c)

where the ordering scheme has been employed to neglect the higher order terms.
Therefore, according 1o Eqs. (3.75), the tangential and perpendicular air velocity, re-

spectively, seen by the blade are given by:

Ur = Qix+e+u)+ Quw, - Qwf +v
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+ uQRv, cosy + uQR siny (3.88a)
Up = w+ Quiw,, + Bp) + 2QR + uQR(w,, + B;) cos ¥ (3.88b)

Equations (3.88) are used to develop explicit expressions for the distributed aerodynamic
loads acting on the blade and control surface.

As stated previously the noncirculatory and circulatory lift are assumed to act normal
to the total air velocity and the parasitic drag is assumed to act parallel. Since the total
air velocity is expressed as components in the "5” system, it is only natural to resolve the
aerodynamic forces and moments into components along the axes of the 5" system, as
shown in Fig. 12. Defining ¢, as the angle between the total air velocily and the yg axis
in the y5 — z5 plane, then the aerodynamic force per unit span in the "5 system can be

expressed as:

—_—

Pa = Pays /éys + Pazs ‘A?zs

where are given by:

Pays = —Dcosg—(Lyc + Le)sin D (3.89a)
Pars = — Dsing,,+ (Lyc+ Lo)cos ¢, (3.89b)

The angle ¢,,, denoted as the "inflow angle”, is so called because it represents the
angle between the tangential velocity Ur and the resultant air velocity \“UE + U% which
exists because of the perpendicular air velocity Up, which is due primarily to inflow. The

inflow angle is defined by the following:

sin (bln:/—————— (3908)

CcOos ¢m = _,72——_——2 (390b)
N UT + Up

Examination of the expressions for U and Up given by Egs. (3.88) reveals that
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Ur ~ 0(1)
Up ~ O(e)
Thus, within the context of the ordering scheme,
ud+ud = ud (3.91)

Therefore, Egs. (3.90) can be approximated as:

- u
sing,, = U:_ (3.92a)
cos ¢, = 1 (3.92b)

Equations (3.91) and (3.92) are not valid in the vicinity of the boundary of the reverse flow
region, where the tangential velocity Ut approaches zero. However, since the air loads in
this region are small compared to those on the outboard sections of the blade, where the
effective air velocities are much greater, their use in Egs. (3.89) should have only a minor
impact on the total air loads.

The use of Eq. (3.92a) is convenient, but can lead to mathematical difficulties in the vi-
cinity of the boundary of the reverse flow region when the tangential velocity U; ap-
proaches zero. Such difficulties can be avoided, however, by assuming in Eq. {3.83a) that
the noncirculatory lift Ly acts normal to the blade chord, so that the angle ¢,, can be re-
placed by the angle of attack « = 85 + ¢. Furthermore, the use of Eq. (3.91) is made in Eq.

{3.74) so that the parasitic drag can be replaced by the expression

1 2, C
D = Zpaag(Cy+ CeslUT a‘;") (3.93)

Making the aforementioned substitutions, Egs. (3.89) become:

U
pAyS = —D-— LNC(OG + ¢)_ LCU—P (3948)
T

u
Pars = — D*U:—+ Le + Le (3.94b)
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where it has been assumed in the above expressions that (6g+ ¢) is a small angle.
Though this is not consistent with the ordering scheme used in this study, it is assumed
here to be consistent with the aerodynamic formulations of Refs. 38, 50, and 53.

In the derivation of the aerodynamic loads in Appendix A the noncirculatory and
circulatory pitching moment are taken to act about the elastic axis of the blade. Therefore
the components of the aerodynamic pitching moment per unit span about the elastic axis

can be expressed in the "5” system as:
- A
a = Gaxs €xs
where
daxs = Mync+ Myc (3.95)

The aerodynamic hinge moment per unit span in the ”5” system can be expressed as:

—_ A
dan = Ganxs €xs
where
Qanxs = Mpne + Mic (3.96)

In addition to the numerical difficulties associated with the existence of the reverse flow
region, problems arise when interpretating what happens to the aerodynamic loads inside
this region, where the air is flowing over the airfoil in a reversed direction. A reverse flow
model, discussed in the next section, is included in this study to account for this flow re-

versal in a straightforward manner.

3.4.2 Reverse Flow Model

In forward flight, a region on the retreating side of the rotor disk experiences reversed
flow. This reverse flow region results from the fact that on the retreating side of the rotor
disk the component of the total air velocity relative to the blade due to forward flight is di-

rected from the trailing edge to the leading edge of the blade. At certain inboard sections
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of the blade (where the velocity of the blade due to its rotation is small) this reversed
component of the total air velocity is larger than the component due to the blade’s rotation
so that the resultant flow sensed by the blade cross-section is from the trailing edge to the
leading edge of the blade. All blade stations and azimuth angles for which the total air
velocity relative to the blade is reversed comprise the reverse flow region. The boundary
of the reverse flow region is described by the locus of points such that the reversed com-
ponent of the tota! air velocity due to forward flight is just cancelled by the component due
to the rotation of the blade. The equation describing the boundary of the reverse flow re-
gion can be found by equating the tangential air velocity Uy to zero. It is impossible to
obtain an exact solution for the boundary of the reverse flow region from U; = 0, unless
the motion of the blade is known a priori. However, an approximate solution for the
boundary of the reverse flow region can be obtained when blade dynamics are neglected.

For this case[25] the equation of the boundary of the reverse flow region is given by:
r=x+e = —uRsiny (3.97)

which represents the circular region shown in Fig. 6. Generally Eq. (3.97) is a reasonable
approximation for the reverse flow boundary for low to moderate advance ratios. As shown
in the cross-hatched region in Fig. 6, the reverse flow region is bounded by a circle of di-
ameter uR centered at r = %?— for the y = 270° azimuthal station on the retreating side
of the rotor disk. Since the diameter of the reverse flow region is equal to R, as the for-
ward flight velocity V¢ increases, the size of the reverse flow region also increases. The
reverse flow region can have a significant impact on the rotor aerodynamic loads, partic-
ularly at high advance ratios; and therefore it should be taken into account when computing
the aerodynamic loads.

In this study it is assumed that the aerodynamic lift and moment per unit span are zero
inside the reverse flow region and that the aerodynamic drag per unit span reverses its
direction inside the reverse flow region, remaining parallel to the total air velocity. Thus
the reverse flow model employed in this study consists of setting the noncirculatory and

circulatory lift to zero and reversing the sign of the parasitic drag for all blade stations in-
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side the reverse flow region. This is accomplished by multiplying alt of the lift and moment
terms by the reverse flow parameter R ), and by multiplying the parasitic drag terms by
the reverse flow parameter Rp, in the expressions for the components of the distributed

aerodynamic loads given by Eqgs. (3.94) and (3.95)

U
Pays = — RpD = R ylnc(bg + @) — RLMLC—Ui (3.98a)
T
¥ UP
Pazs = — RpD 5=+ Ruullne + Lo) (3.98b)
T
Aaxs = Rim(Myne + Myc) (3.99)

where the reverse flow parameters are defined as:

0 for 0<X<Xel¥)
1 for X > Xpa ()

—1 for 0<x< X ¥)
Rp = (3.100b)
1 for X > %o (W)

The quantity x..(y) represents the location of the boundary of the reverse flow region on

blade span, and using Eq. (3.97) it can be defined as:
Xef¥) = —(e+ uRsiny) (3.101)

Equations (3.98) — (3.100) are used in the next two sections to develop the distributed

aerodynamic loads on the blade and on the control surface.

3.4.3 Aerodynamic Loads on the Blade

The expressions for the noncirculatory and circulatory lift and pitching moment acting
on the blade without the presence of a control surface can be obtained by setting c. = 0
in Egs. (3.68) — (3.71).

The noncirculatory lift acting on the blade is given by:
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Lnco = %pAaocf,[UT(BG +¢)+ Ul + ¢)

—Up— (XA—-‘—:—CDXbG—i-(z))] (3.102)
The circulatory lift acting on the blade is given by:

1
Lep = ?pAaochT[UT(OG +¢)-Up

+ (-;—-cb — XaX0G + )] (3.103)
The noncirculatory pitching moment acting on the blade is given by:

1 2 .
Mynco = 3Pa3oChLUT0G + ¢) = (Xa = 5-Co)Up — Urlp
2 _ 1 3 2un i
= (Xa— 5XaCo + 25-CoX0c + ¢)

+(Xa - %cb)UTwG +¢)] (3.104)
The circulatory pitching moment acting on the blade is given by:

1
Mycp = ';_pAaoUch(XA - ch)[UT(QG +¢)—-Up

+ (Co = XaXfg + $)] (3.105)

The parasitic drag acting on the blade cross-section is obtained by setting c.; = 0in Eq.

(3.74), i.e.

Cao
a0

2
Dp = ';_pAaocb(UT"l' URX—2) (3.106)

Similarly, setting c.s = 0 in Eq. (3.93) yields

C
D} = 4paauCUi—2) (3.107)
2 )
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Since Theodorsen’s theory[52] was derived for a symmetric airfoil, the moment per unit

span given by:

C
) (3.108)
o]

1 2002 2
Meamb = 5P adoCu(UT + UpX

accounts for, in an approximate manner, the moment about the elastic axis due to any
camber in the airfoil. This was also done in Refs. 38 and 50.

Using Eq. (3.98). the components of the aerodynamic force per unit span acting on the
blade in the "5” system can be expressed as:

Up

Pabys = — RpDp— Ripmbnenlds + @) — RLMLCbU_T

Up
Panzs = — RDD;’U—T+ Rimtnes + Lep)

Substituting Egs. (3.102), (3.103), (3.106) and (3.107) into the previous expressions yield:

Ro 2 2y Ca
Papys = — TpAaoCb(UT + UpX aoo)

R . . . .
- '—;‘M'p/-\aocg[UT(HG + @)+ U+ ¢)—Up

—(Xa~ %CDXQG + ‘b)](BG + @)

Rim
T PadcCoUp[UH(fg + ¢)— Up

+ (%Cb ~ XX + )]

Ro Cq
Pabzs = — TPAaoCbUTUP( aoo)

+ =500 [Urll + ¢) + Usllg + 6) — Up

—(Xp— %Cbxbe + ¢)]
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Rim
2

+ (%Cb — XAXGG + ¢)]

Substituting the expressions for Uy and Up givén by Eqs. (3.88) into the above ex-

pressions yields:
Pabys =

1 - . . . .
Pa3oCoR {4 {Xa = 2-Collc + $ W + 2(Xa = TCoX2MB + $Xw.y + Bp)

+ %(xA - %cbxés + HYIQR) + -;—wz + QMW + Bp)

+ GORW + %szz(w,x + B2 + QVGQRYW. + o) + %(}.QR)Z

+ [%'(XA — %CDXOG + @)(w,x + Bp) + W(W. + Bp) + Quiw,, + ﬁp)2

+ (ZQRXw  + B)(QR) cos v

+ %{w,x + [SD)Q(MZR)2 cosgu'/}

+ padoCoRLM(bG + ) — %sszv,, - %szw,x(;.sm) - %cbszw_x(éG +¢)

1 I T IR (P 1.,

+ g(XA et ”Z'Cb)cb(gc + ¢) + gcbw + —2-g2WWBp - ?VW
1 o : 1 S

~ Qi - —;—eQw + QWP AQR) + eoQwh (B + §)

1 .. . 1. 1 .

- ?vi(w.x +Bp)— 7(/.£2R)v + ?CDQV(W.X+ Bo)

= el + @) — FeQPuw., + B) + e Qv — QUUQR)
8 b + 2 X p 8 b X 2

_ %Cbggu(OG +é)— —;—Qe(/ﬁQR) - %ech(OG + )
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1

[ = Wy — QW (W + ) = —;{).QR)V,X - —;—cb(QG + P

+ %Qwﬁp(w,x + o) — %\'/(w,x + Bp) = 5 2w, + Bp)
— %eQ(w,x +Bo)+ %cbw,x](pQR) cos
+ - - Lovw, + )~ QR - Lo Qw, + B.)
2 2 R ) g o T e
~ 3-collc + $)UQR) sin v
—- %(W’x + ﬁprQR’)2 cos ¥ siny — %{w,x + ﬁp)v,x(yQR)2 COSQW}

1.
—CpV

+ PadoCoR b + &) { — %CDQVV« - %CDQVV'X + —;‘Cwaﬁp ~ 3

- %chu - %CD(Q + V. XHQR) cos P + %chv,x(uQR) sin /)

+ pad RO + ¢ — QW — %gfv(w,x + Bo)— -;_—Q(;.QR)

1
2

- %cbsz(GG +d)- %Q(w,x + BoXHQR) cos ]

C
+ P ABGCORO(—22){ — %wz — W(AQR) — %\'/2 — e — %(}.QR)Q - %e2§22

Q
+[—w, —eQv, —ww,+ Bo) — (ZQRXw., + Bp)J(uRR) cos yr
+[ - Qw, + Qw, — v — Qu— QeJ(uQR) siny

- v,x(uQR)? cos i siny — %[v,x2 — (W, + ﬁp)2](/.IQR)2 coth//

- %(uQR)Q sin?y )

Cq
+ P ad:CRo(— 2

(o]

X[ — Q2vv,x + szﬁp — Qv - Q% - 0%
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— Qv, (uQR) cos i — QuQR) sin ]

Cao \ 22
3 XQ

1
— —PA3CHRo( 5

2

Pabzs =

PABGCORM{ = 3 AWV, — QWY (F2R) - L — Tekeulbo + $)

1 e LIV PO P
+—2—wa[3,_, 2wv 2Quw 2eQw+—2—Qw().QR)[$p

- —;-vaw,x +B8) - -;—\'/(/'.QR) - %ch\'f(w,x + B+ —;—cbwéG + )

1 2 1 . 1 .

— 7eQ V(W + Bp) — ngQVva - 7(2u(z.(2R)

- 1eQiaR) + %cbeQ(()G +¢)

+[- -;4xA - %c,,xéo oW — %\W,x — QW W+ Bp)
- %(i.QR)v.x + %cb(éG + oW+ -;—Qw[ip(w,x +8,)
— Liwo + By — QW+ Bp) = TeQ(w ., + B,)

2 X P 2 X p 2 X P

— LcgW. J(UQR) cos ¥

1 1 ovh ey 1o 1
+[~- ?(XA - 7cb)(9(; +¢)— 5 W —2-Qv(w,x + Bp)

- —%—(/’.QR) + %—cbﬂ(w,x +B)+ —;—cb(i)c; + $)JuQR) sin

- —;-(w,x + ,BprQR)2 cos ¥ siny — %(w,x + Bp)v,,((yQR)2 c052|//}
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+ Pa3.CoR b + ¢){%CDQVV,X + Qvwv, + %CDQVV,X + eszv,x

- -;—CDQWﬁp - Quwf, — eQ2wﬁp + %cb'\'/ + %\)2 + Quv + eQv

1

T3

cpfu + eQ?u + %eQQ2
+ [%ebv,x + QW2 = QW S+ vy + Qe+ u,,
+ %CDQ](uQR) cos i
+ [Qvv,, — %Cva,x — QW + v + Qu + eQJ(UQR) sinyr
+ v (HQRY cos ¥ siny + %v,f(yQR)g cos®y + %(yQR)z sin%y)
+ 0 A%6CoR UL — HXn = -CoX20G + b) = T QWBWox + Bp) — S
— 102w, + B.) + Q0w — TQUOR) + e Qs + ¢)
2 X p 2 X 2 8 b G
1

- 7Q(w,x + B XuQ2R) cos /]

+ padgCoRLX(g + G QA — QPwh, + Qv + Q%u + eQ?

+ Qv (1QR) cos Y + QuQR)sinyr]

+ %pAaoCbRLMX2(96 + )2

C . .
+ pAaochD(—;To)[ - %(w + /QRYuQR) siny

_ %(w,x + ﬁp)(,uQR)2 cos ¥ siny]

C ) .
+ paayCpR ol ado [ — %Qw — QUOR)

[¢]
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— QAW+ BXHOR) cOs Y] (3.109b)

Using Eq. (3.99), together with Eq. (3.108), the aerodynamic pitching moment about the
elastic axis of the blade in the "5” system can be expressed as:
Aaoxs = RimMynco + Myco + Mcam)

Substituting Egs. (3.104). (3.105) and (3.108) into the previous expression yields:

R 2 1 ; y 1 :
dapxs = ;M P A3cCo{(Xa — —2—%)(9(3 +@)— (Xa— j;Cb)UP

— [(Xa = o)’ + 550510 + &)+ (Xa = 7 co)Ur(06 + #))

R . .
+ %pAaOCDUTXA[UT(GG + ¢) - Up + (%Cb - XAXBG + d))]

Cmo

Rim )
aO

2,2 2
) pAaocb(UT + pr

+

Substituting the expressions for Uy and Up given by Eqgs. (3.88) into the above ex-

pression yields:

Jabxs =

1 1 Pre(b vy A 1
P a3oCoR M~ 2 [(Xa = %be + 35106 + ¢) — FCo(Xa — o)W

1o - 1 . 1 - 1 ;
— ?XAVW - ?eXAQW - ?XAV(AS)R) - E—eXASE(/.SER)

1, . 1 , 1 1.
+ [ - TXAWV’X - ?XAV,X(/.SQR) - —8—'Cb(XA - TCD)W'X

- %XA\'/(W,X +By) — %eXAQ(w.X + B)I(HQR) cos

1 1 1 - y
+[- ?(XA - ?CDXXA - TCDXOG + ¢)

1 1 1y o 1
+ E(XA - ch)ch(va + ﬂp) - ?XAW - ?XASEV(W.X + Bp)
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C

mo
aO

_ %XA(}.QR) + cb'v(%"ﬁ) + e~ ) (UQR) sin ¥

Camo )= —LXA(W,X + ﬂp)](pQR)2 cos ¥ siny
o 2

+ [cpvix

Cmo
(o]

0 XuQR)? sin’y}

- %X;w.,((w,X + BoXHQRY cosiy + —;—cb(
! Ve W+ X2 co 1.2y o2
+ Pa3CoR MG + ¢){§CD(XA - ch)v + ?XAV + eX Qv + e X Q

+ [-CoXa = 5 ColVox + XaWi + XaQv,s

+ %(xA -~ %cb)ch](pQR) cos

+[—- %CD(XA - —}cb)Qv,x + XaQwv,, — XaQwB o + Xpv
+ XaQu + eX,Q](QR) sin
2 , 1 2 2 2
+ XaV.(UQR) cos  siny + TXAV,X (UQR)" cos Y

+—;—XA(HQR)Z sin?y)

1 1 S 1y o
+ P adCoRmx{ — %(XA — 5 %XXa = 7 KA + ¢) — 5 X QW

C

mo
4y

)

_ %xAsz"v(w,x +Bp)— %XAQ().QR)+ CoM—

C
T2 )+ cDeQz(
o

+ [epQ2v

C
mo ) Lx,Q(w., + B))(1QR) cos
ay 2

C
MO YuQIR) sin ¥}
aO

+ €

+ 0 ABCORLMXBG + SIIXAR WV, — XAQPWS, + Xa QU + X7 2%u + XpeQ2®

+ XaQv (uQR) cos Y + X SUufdR) sinyr]
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1

T2

C
2 2
P a3cCHR MX Cpe2 (-%)

+ %pAaochLsz(BG + X022 (3.110)

The distributed aerodynamic loads acting on the blade can be transformed from the "5”
system to the "3” system, in which the equations of motion are formulated, using the co-
ordinate transformation defined in Chapter 2. The distributed aerodynamic force acting on

the blade can be expressed in the “3” system as:

—_ A A A
Pab = Pabx3 €x3 T Paby3s €y3 + Panza €23

where

Pabxa = — Vix Pabys — W.x Pabzs (3.111a)
Paby3 = Pabys (3.111b)
Pabza = — VixW.x Pabys + Pabzs (3.111c)

Similarly, the distributed aerodynamic moment acting on the blade can be expressed in the

“3"” system as:

— A A A
dab = Qapx3 €x3 T Qaby3s €ya + Qabzs €23

where

Gabx3 = Gabxs (3.1123)
dabys = V.x Gabxs (3.112b)
9abzz = W.x Gapxs (3.112¢)
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3.4.4 Aerodynamic Loads on the Control Surface

The contributions to the total noncirculatory and circulatory lift and moment acting on
the blade due to the presence of an aerodynamic surface on the blade cross-section can
be determined by subtracting the contribution due to the airfoil alone given by Egs.
(3.102) —- (3.105) from the total airloads due to the airfoil and the control surface given by

Eqs. (3.68)— (3.71), i.e.
Alnc = Lne — Lnco
Alc = Lc = Lo

AMyne = Myne — Mynes
AMyc = My — My

where the A symbol refers to the change in the quantity due to the presence of the control

surface. Carrying out these subtractions yield:

L - 7
Alne = %pAao(cb + Ccs)z[%ccst + @)= AUgd + UT&%
T,
— (CD + CCS)O—a——]
Q
+ _;—pAaoccs(ch + Ccs)[UT(BG +¢)+ UT(GG +9)
—(Xa— %cb)(éc + )~ Up] G
. - T
Alc = %_PAao(cb + Ccs)UT(—g—ccst +d)+2 31: 0
1 Tas
+ H2¢, + 3 o]
4 %

+ %pAaocchT[UT(GG +¢)—Up—(Xa— %CbXBG +¢)] (3.114)
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1 2 1 .. ..
AMYNC = ?pAao(Cb + Ccs) { - Ez-ccs(zcb + cchBG + ¢)
+ cog[Xa — %(cb + ce))bs + ¢)
— 2cesl U@ + $) ~ Up]
Ty, 2. Ty :
— 2—é-o—UT5 — ?o—(cb + CCS)UTé
Ts 3 T4 . .
+ [mcp + Ceg) + (=Cp — 2Xp2)=——J(Urd + Uyd)
a, 2 ag
1 T7 3 LER
+ —{cp + e =—Cp + Cc) + (5-Cp — 2Xp)—16}
2 L= 2 A
+ %PAaoCcs(zcb + €es){U0G + ¢) — UrUp
= [(Xa = +co) + =310 + é)
+(Xp — %cb)[UTwG +6)-Up])
1 3 ; y Tio
AMyc = —paag(Cp + Ceg)Ur[5-Cesl0 + @) + 2——U16
2 2 ag
1 Tay g 1
+ 7(2CD + 3CCS)-¥6][XA - —4‘(Cb + 2CCS)]

1
+ 'é‘PAaoCCSUT[UT(BG +¢)—-Up

—(Xa— %CDXOG + @)X — %(3% + 2¢c5)]

(3.115)

(3.116)

The additional parasitic drag acting on the blade cross-section due to the presence of

the control surface can be defined as:

1 2 2., Cq
O.=D-Dy = ?pAaoccs(UT'{' UpX aoo

)
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where Eqs. (3.74) and (3.106) have been used. Similarly,
1 2, Cq
D! = D'~ D} = ?pAaoccsuT(a—:) (3.118)

is obtained by subtracting Eq. (3.93) from Eq. (3.107).

Equations {3.113)-(3.116) represent the contribution to the total lift and pitching moment
per unit span acting on the blade cross-section due to the presence of a flap as predicted
by 2D quasisteady aerodynamics. Comparisons of experimentally and theoretically deter-
mined values of the additional lifft and moment produced by a flap have demonstrated in
the case of fixed-wing aircraft that 2D quasisteady aerodynamics tend to overestimate the
airloads by 25-50%[17]. This discrepancy, which increases with increasing Mach number,
has been attributed primarily to the presence of a gap between the trailing edge of the
airfoil and the leading edge of the flap, which was not accounted for in the theoretical
model. The presence of a gap. which is not modeled in the present study, reduces the ef-
fectiveness of the flap[55]. Therefore, a multiplicative correction factor denoted as C; ,
which is less than one, is used to scale the control flap aerodynamic loads given by Egs.
(3.113)-(3.116).

Using Egs. (3.98) the components of the additional distributed aerodynamic force in the

"5” system acting on the blade cross-section due to the presence of a control surface are

given by:
Up
Pacys = — Do~ Ci[Alyelfg + &)+ /\Lcm]
¥ UP

CUT

where the fact that the control surface is located outside the reverse flow region has been
used (i.e. Rp= Ry =1). Substituting Eqs. (3.113), (3.114), (3.117) and (3.118) into the pre-

vious expressions yield:

Cdo
dg

)

1 2 2
Pacys = — E‘pAaoCcs(UT + UpX
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C 21 - . . .
- TpAa°(cb + Ccs) [7c65(9G +@)—2Urd + UT(S}EO—
- Ty
- (cb + Ccs)‘sa—](ee + ¢)
(¢}
G . . .
- TpAaOCCS(ZCb + CCS)[UT(BG + ¢) + UT(BG + ¢)
—(Xa— %Cbxés +¢)— Up)(fs + ¢)
C . . T
— 5 Pa3(Cy + Ces)Upl3 Ceslf + ) + 212U15
o]

Tun .
+ %(2% + 3ecshod)
o

C . .
- _zf‘pAaocchP[UT(BG + @)= Up—(Xp— %CDXQG +¢)]

1 Cq
Paczs = — ?pAaoCchTUP( aoo)

+ St ay 2 e (B + )= 2Urs + U Sy
TPAao»Cb + Ccs) [?Ccs( gt @)~ 2Upd + Uy )?o—
LT
- (Cb + Ccs)‘sa_;]
c, . .
+ ‘8_pAaoCcs(2cb + €U0 + ) + Ur(bg + ¢)
= (Xa— TCDX(}G + ¢)— Up]
Cf . . T
Lo aaclcs + ccs)uT[%ccs(UG +é)+ 2—_81: Ups

T.. .
+ 2c, + e 5]
4 3,

C . .
+ 5P a3 UrlUr(fg + ) — Up = (Xa = -coXilg + 9]
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Substituting the expressions for Ur and Up given by Egs. (3.88) into the above ex-

pressions yield:

Pacys =
o de w2 WL 26 + 3o YWt
Padoy {?Ccsw —(cp + Ccs)VW—a—o”‘ - 'E(cb + CcesX2¢p + Ccs)W—‘sao
—(cp+ ccs)eQw—ao—é + cW(2QR) — —4—(cb + Cs)CesW(lg + @)
(Co + Co W QRILIO 5 — 26 + 36, VORI
T Cp T Ces M~ )a—o - ?(Cb + CesX2Cp + 3Ccs X2 )—a-o_
X Tio 1 - ypr2
- (Cb + CCS)eQ(/'QR)_é_—é + ?CCS(,'QR)
[o]
- %(cb + ccs)ccs(QG + X/OR)
- Ty - vy 110
+ [ - (Cb + CCS)WV'X_¥6 - (Cb + CCS)V'X(/'QR)_é_O_-é
. : Tio
+ CesW(w, + Bp) — (cp + Ces MW,y + Bp)_f?é
—i{c + ¢ X2¢, + 3¢ Jw. + B )Tié
g 0 cs b csATx P a,
T ,
— (Cp + Ccs)CAW .4 + 5p)—a1025 + Ces(Wox + BpXAQR)
~ 3eo + ceslees(Won + Bokdg + $INHOR) cos
10 Tio
+ [ - (CD + CCS)Wa—05 - (Cb + CCSDV(W'X + ﬂp)—éo—é

T
—(cp + ccs)(/'.QR)—;—O&](yQR) siny
o]

Tio . .
—(Cp + Ceg Wy + [ip)a;c:)o(uQR)2 cos ¥ sin
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+ [~ (Cp+ CesVouWox + ﬁp)ﬂé + Ces(Wax + Bp)P JUQRY cos’y)

1 . . ..
+ paaCi{0g + d)){%(?cb + Ces)ees(Xa — ch)(BG +¢)+ %{2% + Ces)CesW

e w1 Lo 2. Ta s 1 2. T4 ;
— 5 CesVW = ?ccseQw + T(Cb + Ccs) Vfa:'s + T(Cb + Ccs) va—oé

» L LA
_ %ccsv(/.sm) - %(2% + Cos)CesWOG + ¢) + —;4% + ccs)ZeQEgé
T. - )
+ %(cb + ol s - %ccseQ(/.QR)
— %(2% + ccs)ccseQ(GG + d)) - —%{cb + ccs)zccs(éc + J))

1 20 Tao 1 . 1 2 Ta g
+ [7(00 + C¢g) v,xEo—é ~ o CesWVx t —4—(cb + Ccs) v,xié

- ';—Ccsv=x(’;~QR) - %(2(:13 + Ccs)ccsvyx(OG + ¢)

LWt B+ Hep + oAt
chs Wox p 4 Co+ Ces _3—0_

_ _;_ccseQ(w.x +Bp)+ %(2% + Ces)oes Wy JUSR) cos ¥

1 2 1
+[- —4—(cb + C) N2 v,x a SLE g W — ?cchv(w,x + Bp)

R G “5 FCeslQR) — 20, + Cc)oes QW + B)

— 428y + Celecs(l + NHQR) sin Y

1

- —z—ccs(w,x + ﬁp)(,uQR)2 COS ¥ siny

— CesV.x(Wax + BXUQR)? cos )
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+ paagCi (0 + ) ~ %(2% + Cog)CesV

- %(2% + Cog)eeelQ + V. XuQR) cos ¥ + %(2% + Cos)Ces V., (HOR) sin Y]
+ paa,Cex[ — (¢, + ccs)s)wla’oﬂa —(Cp + Ceo Q2w + ﬁp)Ta—:’-a

—(cp+ ccsxz(;.gm%a

— (Cp + C AW, + Bp)—%o—é(uQR) cos /]
+ pad,Cix(Og + ) — %CCSQW — %CCSQQV(W,X + ﬁp)

T, . ] . )
+ %(cb + ccsfg%s - %CCSQ(/.QR) - %(2% + o) U0s + 6)

-1

2 CesAW.y + BpXuQR) cos ]

C )
+ pAaOa—doo[ — Ces(V + eQYuQdR) siny — ccsv,x(ﬂQR)2 cos Y siny

- _;_ccs(usm)? sin’y ]

C .
+ pady a‘:’ X[~ CesQUV + €02) ~ € Qv (UQR) COs i — C QuQR) sin Y]

1 Cao 2 o2
- ?pAaoa_oX Ces2

Paczs =

T4
a

padsCr{ — %(cb + Ces Q=2 8(uQR) cos

o

' T T, ;
+ [ . ic W+ 2(Cb +cC )Vié — —{1 Cb + CC )2-‘—4 6
7 Ces s’ a, 4 57 ag
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+ %(cb + Ces 2y + 3c°5)15‘1_o1_5 + 2(cy + ccs)eQ%’—
- %ccs(}.QR) + -g—(2cb + ccs)ccs(()G + )
+ %(cb + Cos)oeslfa + ¢)J(HOR) sin ¥
+ [2(cp + CesVoy 10 6 CS(w + Bp)JuQR) cosuj/ siny
+(cp + ccsyg‘oia(um)"’ sin%y}
+ paaoCr (0 + ¢>)[%(2cb + Ces)CesQAUQR) COS Y + Co(V + EQXUIR) sin P
+ ccsv,x(uQR)2 cos Y siny + —;—CCS(HQR)2 sinztl/]
+ paaCrx{ — cchw + 2(Cp + Cs AV — Tho 6 —(cb + cCS)ZQ—é
+ %(cb + CcsX2¢p + BCCS)Q—T%é + 2(c, + ccs)eQzL—’:é
- —;—CCSQ(}.QR) + %(2% + Ces)CesU0G + @)
+ %(cb + Ces)CesA0g + ¢)
+ [2(cy + Ces )V x “’ 2.0~ cCSS (W.y + Bp)](HQR) cos
+ 2(cy, + ccs)Q—o(uOR) siny}
+ pa2oCrX(Bg + P CesQV + €007 + Co V. (UQR) COS Y + c o AUQR) sin ¥ ]

+ paa,Crx (ctJ + ccs)§22 106
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+ PABCsSY (3.119b)

From Eq. (3.99), the additional aerodynamic moment about the elastic axis in the “5”

system due to the presence of the control surface is given by:

Qacxs = Cr(AMyne + AMe)

where the fact that the control surface is located outside the reverse flow region has been
used (i.e. Rp=R = 1). The control flap is assumed to be symmetric (i.e., uncambered).

Substituting Egs. {3.115) and {3.116) into the previous expression yields:

o s 1 L
Gacxs = 3 PA3(Cp t Ces) {— "3?%5(2% + Ces X + )
+ CeolXa = {Co + )06 + )
- ';_CCS[UT(BG +¢)— Up]
T T .
- zéuié - 3:7(0" + Ce)Upd
Tg 3 Ta . ;
+ [5{cp + cg) + (5cp — 2X 11U 16 + Ugd)
aO 2 ao
1 T; 3 92X T, 5
+ ?(cb + ccs)[—a—o—(cb + ce)+ (7% - A)Z] }
G 2 (e u-u
+TPAaoccs( Cp+ Ce)fUT(0g + @) — UrUp
— [Xa— o) + )G + 6)

+ (X — oo Urldg +¢) — U}

C 3 . . T
+ '2—r‘pAao(Cb + Ccs)UT[?Ccs(BG + ¢) + 2’51;0‘UT5
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T.. .
+ %‘(2% + 3Ccs)%;5][XA - -}(Cb +2¢.5)]
Cy
+ TPAaocchT[UT(BG + ¢)— UP

- (XA - %CDXGG + ¢)][XA - %(3Cb + 2Ccs)]

Substituting the expressions for Ut and U, given by Egs. (3.88) into the above expression

yields:

Qacxs =

1 2.4 V18 1 2 5 9 5o
P 36Cy {5 {Co + Cos) (23—105 + 5%+ Ces) (Xa — —-Cp = —-CesXbG + )

.
+ %(cb + o QL2 (uQR) cos
o

1 T
+ [2(Cy + CsXXa = —Co = %ccs)v—%(i

1 1 1. T g
+ —B—(cb + CesX2Co + 3C XX — 2~ —é—ccs)%é

1 1 Tyo 1 2 T1a ;
+ 2(cp, + Ce X Xa — 2%~ ?(:CS)eQ—ao &+ F(cb + Cs) 31:

1 . . 1 )
— TCeslXa - %cb ~ o)W + AR) — H(2C, + Ceg)eg

T T
2. 2
— .%{cb + C¢s) v—afé — —;—(cb + C¢s) eQE:—é

T, . .
_ %(cb + 065)33_;5 - —;42% + Cs)oesAQR)I(HQR) sin

1 Tiog 1 2, T
+[2ACo+ CosXXn — G~ o CosWx g8 — 5o + o) Vo)

1 3
- —Q—CCS(XA - TCD - Ccsxwvx + ﬁp)
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~ {20+ Ce )W + Bp)JHARY cos ¥ siny

1 1.0
+ [(cp + s XXp — 2%~ ?Ccs)%:é

T
— Moy + o P28 QR sin2y)
4 ER
+ paoC (B + $){ — ={Co + Ces Ces2UQR) cOS ¥
3 . 3
+ [ceo(Xa — —4—0b — CegV + Coo{Xp — ch — Cc5)efd
+ —;{2% + C5)cesV + —}(2% + Ces)ees€Q WP QR) sin Y
+ [Ces(Xa — %cb — CesViy t+ %(QCD + ‘;:t:s)ccs\’-x](l‘QR)2 cos ¥ siny

1 .
+ [—;—CCS(XA — icD — Ces) + F(ch + ccs)ccs](yQR)Q sm21//}

4

1 1 - T1o
+ pa8oCs x{2(cp + C X Xp — 7 o~ ?ccs)Qv—a?

Tqq -
+ l(t:b + CesX2Ch + 3C e X Xp — icb - —1-ccs)§2—1ic3
8 4 2 5

1 1 2T1o 1 26, 118 ;
+ 2(Cb + CCSXXA - —Z'Cb - ?CCS)eQ -30—5 + ?(Cb + CCS) Qa—o

4 1 ;
- %ccs(xA - %cb — )W — -Ceg(Xn — %cb — cJAOR)

: LT 2 2T
- %(2% + ceg)esQw — —;-(cb + ccs)gszv?(';—é - %(cb + Cg) eQ2_a4_5

X nlis_ 10 QR
— 8 CD+ CCS) ..a—o — ?( Cb+ CCS)CCS" A )

1 T 1 26, T
+ [2(cy + cegXXp — %Cb - —Q—CCS)QV,X%C())(S - —é-(cb + ccs) Qv,,(a—46
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— 5 CeslXa = 0 = Cs AW+ )

— 20y + Ces)oes QM + Bo)JHOR) cOs ¥

1 1 T
+ [2(Cb + CCSXXA - ch - 7CCS)Q—$5

- %{cb + ccs)gﬂ-;i—é](pQR) siny)
+ padoCrx(0g + @){cee(Xa — %cb — CcsJV + Cog(Xp — %—cb ~ c.5)eQ?
+ %(2% + Ces)CesV + %(2cb + ccs)e§22
+ [Ces(Xa — -i—cb — Ces V. + —}{2% + €s)Ccs Vv, J(MQRR) cos Y
+ [Ces(Xp — %cb ~ce )2 + %42% + € )Ces N (HQR) sin )
+ paaoCy X2[(Cp + CesXXa = %cb - %ccs)sz"’%’a - %{cb + ccsz?Z_:(;]

+ paa Gy x2(0G + d))[-%—CCS(XA - %Cb - ccs)Q2 + %(2% + ccs)cchQ]}

From Eq. (3.96) the aerodynamic hinge moment per unit span in the "5” system is given

by

Qanxs = Cr(Mpne + Mpc)

where the multiplicative scaling factor C, has been used to account for the over-prediction

Substituting Egs.

of the aerodynamic hinge moment by 2D quasisteady aerodynamics.

(3.72) and (3.73) into the previous expression yields:

Cr 2,2
Qanxs = — TPA(CD + Ces) (U0 + ¢)Tq, — UTUpTy,

+ [—;—(cb + 36cg) — XaXT1p — TalUr(f + ¢)
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1 : ~ L
— 2{Co + CeoX2To + TlUr(B + 8) + 1 Tis(ey + ccs)Bs + )
N T
+ oy + el Up — UnlB + Ty + 2032
—(cp+ ccs)a—OUTé + 7{2% + 3c°5)To'(T12 — T )Ud

1 2: T3
_ .2_(cb + Ces) 63—0}

Substituting the expressions for Uy and Up given by Egs. (3.88) into the above expression

yields:

Qanxs =

paCi(cp + cos){ — %{cb + CWTy + %vwrm + %eang + %‘v(/LQR)nQ
. b -
+ JeQUQRTy, - —;—(cb + ¢ )b + )71
LW Too + v GORIT,, + T+ e T
+ [va,x 12+ —4—v,x(/. Mo+ TV(W’X + Bo)Tip+ i Aw,, + BTy,

T .
+{Cp + Co)2520 — ey + oo, Ty JHQR) cos

1 1 - -
+ [Xa = 3G — %CCS)(T12 — T X0+ @)
1 v - Tis
+ —B_(Cb + CCSX2T9 + T1XBG + ¢) + 7WT12 — V—a—
o]

. Tis -
) Tis 5, 1 OR)sin
— es.—g() + E(Cb + CCS)Q(W,X + Bp)T1](,U..-.R) siny

T 1 2 :
+[— v,Xa;:é + I(W,x + BT JQR) cos ¥ sin
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.
115 5(uQRY sin%y)
(o]

1
+ —4—v,x(w,x + [i'p)T12(u§2R)2 cos?y — >3

1 y 2 :
+ PaC(Co + o5 (B + ) g{Co + CeoiTy = 7Ty, — TeQiTy,

— %eQQQTM,

1 . 1. 1
+ [—B—(Cb + Ces VT — —2-vv,xT12 - 7er,xT12

+ {0+ Ceo)AT{(OR) cos ¥

+[- %vi,xT12 - -:3—(% + Ces )V, Ty + %Qwﬁp'ru - %VTW
_ %QUTQ - %eQTQ](yQR) sin i

— —;—V,XT12([1QR)2 cos ¥ siny — %V.x2T12(“QR)2 COé?‘l’

— -}TQ(NQR)? sin’y )

+paC(cp + Ccs)2x{71‘"(xA - %Cb - %CchTm —~ T 0 + ¢)

+ %(cb + CesX2Tg + T0G + ¢) + %szwnz

T

— Qs+ %Q%(w,x + BTy + %—Q(/'.QR)TQ

1 Ti6 ; 2 Tis
- 1_6(2cb + 3c 2 a, 56— eQ a. é
Tss 1,
L= Q28+ 10w+ BT, JUOR) cos
(o)

-Q

T
D 5(1QR) sin )
aO
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2 2 .
+paCy(Cp + Ces) X0 + D) ~ —12—9 wWixTyo + '%szﬁan - -12'QVT12
- —;—QQUTQ - %eQQTm
- —;—QV,XTQ(MQR) cosy — %QTu(uQR) siny/]

d

T

R VI RS L ol
2 a5

— A, e 20 + ¢)X°T 3.121
TpAfcb+Ccs)x(G+ KTy, (3.121)

where
Tys = Ts+ Tig(T1o — Ty)

Tig = Tir(T12—Ty4)

Ty = THep + Ceg) + (3 — 2X)T

The distributed aerodynamic loads acting on the control surface can be transformed
from the “5” system to the “3” system, in which the equations of motion are formulated,
using the coordinate transformation defined in Chapter 2. The distributed aerodynamic

force acting on the control surface can be expressed in the “3” system as:

—- A A A
Pac = Pacxa €xa 1 Pacys €y3 + Pacza €23

where

Pacxa = — Vix Pacys — Wx Paczs (3.122a)
Pacys = Pacys (3.122b)
Paczz = — VaxW.x Pacys t Paczs (3.122c)
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Similarly, the distributed aerodynamic moment due to the control surface can be expressed

in the "3" system as:

- A A A
Gac = Oacxa ©x3 T Qacys €ya + daczz €23

where

Gacxs = Gacxs (3.123a)
acys = Vix Gacxs (3.123b)
Gaczz = Wix Qacxs (3.123c)

3.5 DAMPING LOADS

The structural damping present in the system is assumed to be of a viscous type. The
structural damping is assumed to act on the blade only. The representation of the struc-
tural damping presented below is adopted from Ref. 38. The distributed damping force

acting on the blade is defined as
— . A A
Pp = — s Vey3—OgrWes (3.124)

Similarly, the distributed damping moment acting on the blade is defined as

- A
o = — 09579 €y

which can be expressed in the "3” system as

— T A A A
p = — gsy (e — Vi, €y3 — W.x €;3) (3.125)
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3.6 TOTAL DISTRIBUTED LOADS
The total distributed loads are obtained by summing the inertial, gravitational, aero-
dynamic, and damping contributions.

The resultant distributed force acting on the blade is given by:
Po = Pio+ Pep + Pan+ Po (3.126)
which can be expressed in the "3” system as:
Bb = Pox3 /éxa + Poya ay3 + Pozs 323
where

Poxa = Piox2 + Paoxz + Bp (Pinz2 + Pabz2)

— V.x Pabys — W.x Pabzs (3.127a)
Poys = Piby2 t Pgoy2 + Pabys — 9sL v (3.127b)
Poza = — Bp(Pioxe - Pobxa) + Pibz2 + Pobz2

— V.xW.x Papys + Pabzs — 9sF W (3.127c)

The total distributed moment acting on the blade is given by:
Ay = G+ dgp + Gap + Gp (3.128)
which can be expressed in the “3” system as:

— A A A
Gp = Qpx3 €x3 + Apy3 €ya + Apz3 €23

where
Qox3 = Gioxz + Gobxa + Bp (Aioz2 + Gobze) + Ganxs — 9sT ¢ (3.128a)
Gpy3 = Qipy2 + Goby2 + Vix Gapxs + 9sT1 V.xtf’ (3.129b)
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Uoz3 = — Bp(Aioxe + Aopxe) + inza + Aapz + Wiy Qabxs

+ 97 Wy & (3.129¢)

The resultant distributed force acting on the control flap is given by:

—_

Pe = Pic + Pac + Pac (3.130)

which can be expressed in the “3” system as:

-—

Pc = Pexa /éxa + Pey3 /éys * Pcz3 623

where

Pex3a = Picxs + Peexa + Pacxa

Pcyz = Picys + Pgeya + Pacy3

Pcz3 = Picza t Pgeza + Pacza (3.131)

The resultant distributed moment about the elastic axis of the blade due to the control

flap loads are given by:

Qc = Eilc: + aAc + aGc (3.132)

which can be expressed in the “3” system as:

—_

A A A
9c = Gz xa + Qcyz €y3 + Ucz3 €53

where

Qex3a = Giexa + Geexs + 9acxs (3.133a)
Qcys = Gicya + AGeys + Qacys (3.133b)
Qcza = Qicza 1 Goeza + Gaczs (3.133c)

The resultant distributed moment about the control flap hinge is given by:

q, = Qi + Qgn + Qan (3.134)
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Chapter IV

OFFSET-HINGED SPRING RESTRAINED BLADE MODEL

In this chapter, the equations of motion of an isolated hingeless rotor blade are formu-
lated using the offset-hinged spring restrained blade model. This model is used in the first
stages of this study to gain physical insight into the problem of controlling helicopter vi-
brations using an actively controlled flap mounted on the blade. The key insights learned
in the first stage are then used as a foundation for the second stage of this study, which

focuses on practical issues concerning the control flap implementation.

41 THE BLADE MODEL

The offset-hinged spring restrained blade model was first used in Ref. 37 to study the
flap-lag dynamics of a hingeless rotor blade in hover. Since then many good models have
been derived[50.53] based on the spring restrained model to study the flap-lag-torsion
dynamics and stability of hingeless rotor blades in forward flight. The simple spring re-
strained blade model is particularly convenient for developing explicit equations of motion
for the blade dynamics. Valuable insight can be gained by examining the coupling between
the flap, lead-lag and torsional dynamics, which is possible when an explicit formulation is
used. Though the spring restrained blade model of a hingeless blade is not as refined or
accurate as a fully flexible blade model, it is very useful for performing trend type studies.
The essential features of the offset-hinged spring restrained blade model are discussed in
the next section.

In the offset-hinged spring restrained blade model, the flexibility of the blade is con-
centrated at a single point called the hinge offset point, located a distance e from the hub;
the blade outboard of the root is assumed to be completely rigid. An orthogonal triad of
torsional root springs, oriented along the axes of the "S” system as shown in Fig. 2, is used

to represent the flexibility of the blade in flap, iead-lag and torsion. It is assumed that the
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orientation of the triad of root springs does not change as the blade deforms. This as-
sumption is consistent with the modeling of an hingeless rotor blade which, being
cantilevered at the blade root, undergoes no displacement or rotation at the root of the
blade.

The elastic deformation of the spring restrained blade consists of the rigid rotation of
the blade about the root springs in flap, lead-tag and torsion. The following deformation
sequence is adopted in this study: 1) a flap rotation by the angle B clockwise about the
Y, axis; 2) a lead-lag rotation by the angle { counter-clockwise about the Z axis after is has
been rotated by the angle 8, and 3) a torsional rotation by the angle ¢ counter-clockwise
about the x4 axis after it has been rotated by the angle § and then {. These three angles
completely describe the elastic deformation of the offset-hinged spring restrained blade,
and thus represent the blade degrees of freedom for this blade model.

The elastic restoring moments about the blade root are obtained by resolving the total
rotation resulting from the above sequence of rotations into components along the axes
of the torsional root springs and then multiplying each component by the negative of the
appropriate spring stiffness. In this study, the stiffnesses of the torsional root springs are
selected so that the resulting uncoupled non-rotating frequencies of the rigid blade in flap,
lead-lag and torsion match the corresponding uncoupled first non-rotating frequencies of
the fully elastic blade.

The elastic restoring moments are combined with the moments about the blade root
due to the distributed inertial, gravitational, damping and aerodynamic loads on the blade
to obtain the resultant moment about the blade root. The equations of motion for the
offset-hinged spring restrained blade model are obtained by setting this root moment to
zero. This yields a set of three fully coupled nonlinear ordinary differential equations of
motion, which are associated with the flap, lead-lag and torsional degrees of freedom of
the blade. The resulting equations are nonlinear due to the assumption of moderate de-
flections, which introduces geometric nonlinearities into the expressions for the inertial,

aerodynamic and structural loads, and couples the equations of motion as well.
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4.2 DISTRIBUTED LOADS

General expressions for the distributed loads on the blade have been developed in
Chapter 3 in terms of the three displacement quantities u, v and w and the rotational
quantity ¢. Before these loads can be integrated along the span of the blade, they must
be expressed entirely in terms of the blade degrees of freedom of the spring restrained
blade model, namely the flap angle 8. the lead-lag angle { and the twist angle ¢. The re-
lationship between these two sets of variables can be determined by comparing the posi-
tion vector of a point on the elastic axis of the blade described in terms of the blade
degrees of freedom for the rigid blade model with the position vector defined in Chapter 3
in terms of u, v and w. In Chapter 3 the position vector of an arbitrary point on the elastic

axis of the deformed blade was shown to be given by

rEA = egxz+(x+ U)/éx3+vgy3+wgz3 (382)

For the offset-hinged spring restrained blade model, the position of an arbitrary point on

the elastic axis of the deformed blade can be expressed as:
_':EA = e/é)(2+xléx4 (41)

Transforming the unit vector 3,(4 to the “3” system using the appropriate coordinate trans-

formation defined in Chapter 2 yields:
X/éx4 = x/éx3+Cx gy3+ﬁx 823 (42)
Substituting the above expression into Eq. {4.1) yields:
b A A PPREAY A
fea = €€+ Xe g+ {xes+ fxes

Comparing the previous expression with Eq. (3.82) reveals that

v=2{_{x, w=fx (4.33)

Ve =10 . wy=8 (4.3b)
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The axial displacement u(x) due to the flap and lead-lag angular displacements, 8 and {,

can be expressed as:
)= 1@+ Box = — L+ (4.4)
A 2

Expressions for the distributed loads acting on the spring restrained blade mode! are
obtained by substituting Eqs. (4.3) and (4.4) into the expressions for the distributed loads

acting on the fully elastic blade model formulated in Chapter 3.

4.3 ROOT MOMENT DUE TO BLADE LOADING

The moments about the blade root due to the distributed inertial, gravitational and
aerodynamic loads acting on the blade are obtained by integrating the distributed loads
along the span of the blade. Since the blade outboard of the root is rigid, the geometry of
the deformed blade is unchanged from the geometry of the undeformed blade, and is
therefore known a priori. Furthermore, the distributed loads are separable in terms of their
spatial and time dependencies, consisting of products of the blade degrees of freedom
B. { and ¢, which are functions of time only, and known x-dependent quantities, such as
the mass, pretwist and principal cross-sectional inertia distributions of the blade. This
separability permits the explicit integration of the distributed loads along the span of the
blade, thereby eliminating the spatial degree of freedom in the equations of motion.

The integration along the blade span can be expressed symbolicaily as

- Lo by A -
MR:J qbdx+J~ X €y X PpdX
0 0

XCS + LCS—-A XCS + LCS A —_
+j gc dx+j X €4 X Pedx (4.5)
X X

s cs

which can be expressed in the “3” system as:

- A A A
Mg = Mg exs+ Mgyz€y3 + Mg,3 €53 (4.6)
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The evaluation of the various integrals appearing in Eq. (4.5) is too lengthy to be presented
here, but is described in detail in Appendix C. The substitution of Egs. (4.3) and (4.4) into
the expressions for the distributed loads derived in Chapter 3, and the integrations in Eq.
(4.5), are performed explicitly using the symbolic manipulation program MACSYMA. The

application of MACSYMA in evaluating expiicit integrals is described in Appendix B.

4.4 ELASTIC RESTORING MOMENTS

The elastic restoring moments are obtained by resolving the total rotation of the rigid
blade about its root into components along the axes of the torsional root springs and then
multiplying each component by the negative of the appropriate spring stiffness. The
torsional root springs are oriented along the axes of the "S” system as shown in Fig. 2.
The orientation of the triad is oriented by pilot input at an angle R:0g, about the x4 axis,
as shown in Fig. 2, where 0g, = 85(x = 0) represents the total geometric pitch angle at the
blade root. The elastic coupling parameter R- was introduced in Ref. 50 to vary, in a
simple manner, the amount of flap-lag elastic coupling present in the model. When
Re = 1.0, for example, there is full elastic coupling and the orientation of the root springs
changes as the pitch of the blade changes in such a manner as to always remain parallel
to the principal axes of the blade at the blade root. This case models a hingeless rotor
system with all of the flexibility oulboard of the pitch change bearing. When Rz = 0 the
orientation of the root springs does not change as the blade pitch changes. This case
models a rotor system with all the flexibility inboard of the pitch change bearing. Values
of R between 0.0 and 1.0 represent varying amounts of flap-lag elastic coupling present
in the helicopter model.

It is assumed that the orientation of the root springs does not change with the blade
deformation. This is to be consistent with the modeling of a hingeless rotor blade, which
is cantilevered at the blade root. The cantilevered boundary condition specifies a zero

slope at the cantilevered end.
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In order to evaluate the elastic restoring moments provided by the triad of root springs,
it is necessary to calculate the total rotation about the blade root due the flap rotation f,
the lead-lag rotation {, and the torsional rotation ¢ about the blade root. The evaluation
of the total rotation is facilitated by the use of the transformation matrices defined below.

The transformation matrix associated with a rotation by the angle 8 clockwise about the

y; axis is given by

[Tgl=1| O (4.7)

O =0
A O™

The transformation matrix associated with a rotation by the angle { counter-clockwise

1 { O
[T;]=[—< 10 (4.8)
0 0 1

it should be noted that it has been assumed that § and { are small angles.

about the z, axis is given by

it is easily verified that, within the context of the small angle assumption, the inverse

transformations can be obtained by matrix transpose

[Tg] " = [T (4.92)

T

i

(T,] (4.9)

>

[t

Assuming the angular rotations to be small, which is consistent with the ordering
scheme used in this study, they may be treated as vectors oriented in the direction about
which the rotation occurs. Using the transformation matrices defined above, the total ro-

tation vector can be expressed in the “3"” system as:
9rx3 0 T 0 T T (rb
Oryzp = —Oﬁ + [Tpl 00 + [Tpd [T¢] 8 (4.10)
5

rz3
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where the use of Eq. (4.9) has been used to define the inverse transformations. The neg-
ative sign on the flap angle 8 in the above expression is due to the fact that § has been
defined in this study as positive clockwise.

Carrying out the matrix multiplications yields:

Oz = ¢&—B (4.11a)
0ry3 = ~f+ ¢ (4.11b)
O3 = C{+op (4.11¢c)

The total rotation vector may be transformed to the "S” system using the appropriate

coordinate transformation defined in Chapter 2, yielding

erS 1 0 0 9r3x
TYS = 0 CQS( RCF)GF) - Sin(RCHGr) 9r3y (412)
;s 0 sin{Rclg,)  cos(Ralg,) 0,4,

Carrying out the matrix multiplication, the components of the total rotation about the blade

root in the “S” system are:

Orxs = ¢ — BS (4.13a)
Orys = (— B+ $)cos(RAc, )+ ({ + ¢ ff) sin{Rf,) (4.13b)
0., = ({+ Ppf)cos(Relg,) — (= B + @) sin(Rcbg,) (4.13¢c)

Now that the total rotation vector due to the sequence of rigid rotations about the blade
root has been resolved into components along the axes of the “S” system, the elastic re-

storing moment about the blade root in the “S” system can be expressed as:

e ¥ o o grxs (4.14)
Eysy — T rys .
EzS 0 Oﬂ K: HrzS

where Kg, KC and K, are the torsional spring stifinessess in flap, lead-lag and torsion re-
spectively.

Carrying out the matrix multiplication yields:
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Mexs = — Kgl@ — B0) (4.15a)
Meys = — Kgl(— B + (@) cos(Rebg,) + (£ + ) sin(Rebg)] (4.15b)
Meos = — K[ + Bd) cos(Rebg,) — (— B + {¢) sin(Rebg,)] (4.15¢)

Finally the elastic restoring moment at the blade root may be expressed in the "3”
system, in which the dynamic equations of motion are formulated, by transforming them
from the “S” system to the ”3” system using the appropriate coordinate transformation

defined in Chapter 2

Meyzp» = | 0 cos(Reflg)  — sin(Rebg) |4 Meys (4.16)
Mez3 0 sin(Rclg,)  cos(Rebg,) | (Mezs

Carrying out the matrix multiplication yields the components of the total elastic restor-

ing moment about the blade root in the “3” system:

Mg = — Ky(d — BO) (4.17a)
Meys = — [Kgcos’(Reflg,) + K sin“(Refg) ) = B +{4)

+(K: — Kg) cos(Relg,) sin(Re, XC + Bd) (4.17b)
Meys = — [K; cos’(Relg,) + Kg sin“(Refg))C + Bb)

+(K; — Kg) cos(Re0g,) sin(ReBa X — B + () (4.17c)

The above expressions are identical to those derived in Refs. 38, 50 and 53. It is interesting
to note from the above expressions that for a “matched stiffness” rotor blade (i.e.
Kg = K;) that there is no elastic coupling even for Rc > 0

The spring stiffnesses K. Kg and K; are usually selected[38.50.53]} such that the non-
rotating flap, lead-lag and torsional frequencies of the rigid blade match the corresponding

fundamental non-rotating flap, lead-lag and torsional frequencies of the actual blade which

is being modeled. Denoting wg, w; and wy as the fundamental non-rotating frequencies
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of the blade in flap, lag and torsion, respectively, the torsional stiffnesses are defined as

follows:
Kg = wjly+1o) (4.182)
Ky = @i(lp+10) (4.18b)
Ky = 03y + Jo) (4.18¢)

where |, and |, represent the flapping inertia about the blade root of the blade and control
surface, respectively, and J,, and J. represent the polar moments of inertia of the blade and
control surface, respectively. The above expressions, without the control flap inertias
terms, have been taken from Ref. 50.

Since the blade configuration is usually described by the fundamental rotating fre-
quencies, it is desirable to define the relationship between the rotating frequencies, which
characterize the blade configuration, and the non-rotating frequencies, which are used to
obtain the spring stiffnesses. For the offset-hinged spring restrained blade model used in
this study, the fundamental rotating frequencies of the blade can be expressed as:

X,e
(;)?;1 = (012; + Q%+ MDQ2 IL + ((u? — (UE) sinQ(RCOGr) (4.193)
b

Xpe
Wl = Wl + MDQQIL+(wg—mf;)sin2(RC9G,) (4.19b)
b

| —1
wi?”l _ (1)2@+§22 mbr3 mbr2 (4'19(:)
Jo
where
L 2 .2
0

-Lb
.2 2
J (IM82 Sin Bp[+ IMB3 COoS Gpt) dX = lmbr3
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Equations (4.19) were obtained from the linearized rotating free vibration problem for the
offset-hinged spring restrained blade model[38,50,53].

Modifying Egs. (4.19) to include the control flap inertia yields:

w%=aﬁ+y+Mﬁ2ﬁﬁ +W¢'ﬁi
b c b c

+ (wf - wh) sin’(Refg,) (4.20a)
Wl = wf + M2 l::elc + M2 bejretc

+ (wf — wf) sin’(Rehg,) (4.20b)
w?) = w} + QP dmbrs = lmbra (4.20c)

Jp + J¢

where M, is the control flap mass, and x is the distance to the mass centroid of the control
flap from the blade root. The above expressions have been obtained from the linearized
rotating free vibration problem for the offset-hinged spring restrained blade model with a

partial span trailing edge flap. These expressions were obtained using MACSYMA.

4.5 STRUCTURAL DAMPING LOADS
The structural damping incorporated in this analysis is of a viscous equivalent type, and
is identical to that used in Refs. 38, 50 and 53. The damping moment about the blade root

in the "3” system is defined as:

- A A A
Mp = Mpys e+ Mpys €y3+ Mpyz ez

where
Mpxs = —Cg ¢ (4.21a)
Mpys = Cp B (4.21b)
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Mpzz = — Cgi (4.21c)

Cgp. Cg and C¢ are the damping coefficients in flap, lead-lag, and torsion, respectively.

46 EQUATIONS OF MOTION OF THE ISOLATED BLADE

The dynamic equations of motion of an isolated blade for the offset-hinged spring re-
strained blade model are formulated by summing the moments about the blade root and
setting this sum to zero. The total moment about the blade root due to the inertial,
gravitational and aerodynamic loads is countered by the elastic restoring moment and the
viscous damping moment about the blade root. Summing the moments about the btade

root and equating the resultant to zero yields:

Mg+ Mg+ Mg = 0 (4.22)

Substituting Eqgs. (4.6), (4.21) and (4.21) into the previous expression. and evaluating each
component to zero, yields the equations of motion for the offset-hinged spring restrained

blade model:

Flap Equation
— [Kg cos*(Refg,) + K sin“(Refg )] — B+ {¢)
+ (K; — Kp) cos(Refg,) sin(Relg, XC + B)

Lag Equation

— [K; cos(Relg,) + Kg sin’(Re)1(C + Bep)

+ (K; — K[)v) COS(RCBGF) Sin(RCBer — ﬁ + €¢)
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Torsion Equation

— Ky(d —B0) = Cy & + Mgz = 0 (4.25)

Explicit expressions for Mg,3, Mgy3 and Mg,; are developed in Appendix C using

MACSYMA.
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Chapter V

FULLY ELASTIC BLADE MODEL

In this context, the blade is considered to be a deformable slender rod, made of linearly
isotropic, homogeneous material. The analysis is restricted to the case of smali strains
and finite rotations (i.e. moderate deflections). In this study the Bernoulli-Euler hypothesis
is assumed to apply. Furthermore, it is assumed that strains within the cross-section can
be neglected.

The structural part of the model is taken from Ref. 46. In that reference a set of non-
linear partial differential equations of motion was formutated for an isotropic bilade with
fully coupled flap-lag-torsional dynamics undergoing moderate deflections. The distributed
inertial. gravitational and aerodynamic loads acting on the blade have already been de-
veloped in Chapter 3. These loads have been formulated in terms of the elastic displace-
ments u, v, and w and the elastic twist ¢. The inextentionality assumption is used to
eliminate the axial deformation u(x) from the expressions. For an inextensional beam

cantilevered at x =0, the axial displacement at a spanwise location x is given by
X
u(x) = — %j (v + w2, dx (5.1)
0

This relation is frequently denoted as the shortening effect due to bending deformation.
The spatial dependence of the equations of motion is removed using Galerkin’s method

of weighted residuals. Two torsional, two lead-lag, and three flap free vibration modes of

the rotating blade are used to represent the blade flexibility. The rotating mode shapes

are obtained using the first nine exact nonrotating modes of an uniform cantilevered beam.
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5.1 EQUATIONS OF MOTION OF THE FLEXIBLE BLADE

The formulation of the mathematical model for the fully elastic blade problem is based
upon a set of consistently derived, non-linear partial differential equations describing the
coupled flap-lag-torsional dynamics of an isolated rotor blade in forward flight, formulated
in the undeformed reference frame assuming moderate deflections. A general version of
these equations, with the distributed loads left in general symbolic form has been pre-
sented in Ref. 47. The general blade aeroelastic equations in forward flight presented in
Ref. 47 are based on the formulation of Ref. 46.

The equations of equilibrium which serve as the starting point in this study are given
by Egs. (5)-(7) of Ref. 47 and are presented below. These equations were formulated using

the deformation sequence lag-flap-torsion.
Flap Equation

— [(Elyy — El,p) sin 8 €08 O5(V.y + 26W,,,) + (Elyz — Elp Wpv.xx COS 20
+ (Ely; sin’0 + El,, cos0 5w,
— TXjp( 8in O + ¢ cos 0)].,x
+(Gp® 1V oodx + (W Ty = (Virlya) iy + Ayaix+ P2z = 0 (5.2)

Lag Equation

— [(El;; cos°0 + El,,, Sin*0g W + (El-; — El,, )W, COS 205
+ (Elyy — Ely,) sin g cos Og(W. . — 2¢v..,)
— TXp( cos g — ¢ sin 05)].
- (GJb(r/)!xwvxx)x + (V-xT)-x + (vaqx3)=x —Qz3xt py3 =0 (5.3)

Torsion Equation

[GIy(@ y + VoW, )]«

+ (Bl — El,m)[(vz,xx - wg,xx) Sin 8 cos Og — v, W, €Os 205]
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+ TXip{W.xx €OS 8 — V.5« 8in 85)
+ Gxa + VixQys +W,Qz;3 =0 (5.4)
where X, is the offset of the tension center from the elastic axis, and

— A A A
P = Pxa€x3t Py3€y3t Pz3€s3 (5.5a)

— A A A
q Ox3 €x3 + qy3 ey3 + 923 €23 (5-5b)

represent the total distributed force and moment, respectively, acting at the elastic axis of

the blade, expressed in the undeformed reference frame (“3” system).

The quantity GJ, is the torsional stiffness of the blade
2 2
A
and EICC and El,, represent the principal bending stiffnesses of the blade cross-section

Ely, = LE{?,dA (5.7a)

Ely; j EnddA (5.7b)
A

The boundary conditions associated with Egs. (5.2) — (5.4) are:
atx=0: v=w=¢=v,=w,=0 (5.8a)
atx=Lp: Vox=Voxx=Wox=Woxx=Px=T=0 (5.8b)

The firs! set of boundary conditions is associated with the cantilevered root at x = 0, and
the second set is associated with the free end at x = L,

The equations of motion represented by Egs. (5.2) —(5.4) were formulated using the
deformation sequence lag-flap-torsion. This differs from the deformation sequence flap-
lag-torsion adopted in this study in the derivation of the distributed loads acting on the

blade. To formulate a consistent set of equations it is necessary to adopt and maintain a
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single deformation sequence. Therefore, to avoid rederiving the distributed loads, a set
of equations analogous to Egs. (5.2) — (5.4) is developed in this section for the sequence
flap-lag-torsion.

Equations (5.2) — (5.4) were obtained from a general set of expressions developed in
Ref. 46 in which the transformation from the undeformed to the deformed reference frame
was left in symbolic form. The transformation from the undeformed reference frame ("3”

system) to the deformed reference frame ("4” system) was represented symbolically as:

A A
€xa €x3

A ' S Si),

N Szt Sz 1

€74 €z3

The general set of equations, based on this transformations, are represented by Egs. (C-24)

of Ref. 46:
Flap Equation

{My x + (S12).uMy + [(Sa2).x — S12(S31)xIMz — Sp3 M, )

+ (813 T)vx - (812 qx3)’x + Gyz:x + Pz = 0 (5.10)
Lag Equation

- {Mzix + (813)vax + [(823)0( - S13(821)'>(:|My - S32 Myvx}’vx
+(S12 Tx— Qg3 +(S130x3)x+ Pyz = 0 (5.11)

Torsion Equation

Myox + [(S21)ix + 813(823).xIMy + [(S31).x + S12(S32).xIM,

+ 83 +S12ay3+8430,53 = 0 (5.12)
where
M, = Gyt (5.13a)
My = —El, K, — Ely i, + T 2, (5.13b)
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M, = El;ky +Elyz 0, —Typ (5.13¢)

represent the components of the elastic restoring moment acting on the cross-section of

the deformed blade. The bending stiffnesses are defined as:

ElZZ = J‘ E (yA - y0)2 dyO dZo
A
ElyZ = J E (yA - yosz - Zo) dyO dZO
A

2
Elyy = LE (zp — 2g) dypdzg

The coordinate pair (ya, Za) represents the coordinates of the area centroid of the blade

cross-section, i.e.

j Yo dyodzg = yaAp
A

b

J. ZO dyOdZO = ZAAb
A

b

where A is the area of the blade cross-section.

For a symmetric blade cross-section:

El,, = Ely cos’dg + El,, sinfg (5.14a)
Ely, = (El;; — El;)sin 8 cos O (5.14b)
El,y = Ely; sin O+ El,, cos 0; (5.14¢)

Furthermore,
Ya = X5C080g . zp = Xy sinfg

for a symmetric blade.
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The quantities denoted by ky and k, in Eqgs. (5.13) represent the bending curvatures of

the blade and 7 is the rate of twist. These quantities are defined in Ref. 54 by:

A A A A

Ky = €ua " Cux = — €34 €yax
A A FaN A

Kz = €74 €qx = — €4 €74
A A A A

T = €24 Cyax = — €yp €4

The bending curvatures and the twist of the blade depend upon the transformation from the
undeformed to the deformed coordinate system. Making use of Eq. (5.9), general ex-

pressions for the curvature and twist are

Ky = (S12)y + S23(S13).x (5.15a)
Kz = S33(Syp)x + (Sq3)x (5.15b)
T = S31(Sy9)x + (Spz)x (5.15¢)

A detailed derivation of the equations of motion for the deformation sequence lag-flap-
torsion represented by Eqs. (5.2)—(5.4) frorn the general expressions given by Egs.
(5.10) — (5.12) and (5.15) is presented in Ref. 46. For this sequence the transformation from

the undeformed to the deformed reference frame is given by:

A A
ex4 1 V')( w‘)( e)(3

eya p = | (vt dwy) 1 ¢ 1<%, (5.16)
A A

e24 - (va - ¢V~x) - (d) + V’XW’X) 1 eZ3

Using Egs. (5.15), the expressions for the bending curvatures and twist for the case lag-

flap-torsion are:

Ky = Vgt @W. (5.17a)
Ky = Wy — @V (5.17b)
T = @+ VW (5.17¢)

110



The ordering scheme has been used to neglect the higher order terms in the above ex-
pressions. In Ref 46 Egs. (5.17) were substituted into Egs. (5.10)—(5.12) to obtain the
equations of motion represented by Egs. (5.2) - (5.4).

For the deformation sequence flap-lag-torsion, the transformation from the undeformed

to the deformed reference frame is given by:

A A

€xa 1 Vix W, x €x3

A A

ey = | —(vetow,) 1 (¢- Vi W.y) €ey3 (5.18)

A A

€24 - (W-x - ¢va) - d) 1 €z3

Using Egs. (5.15) the bending curvatures and twist for this case are:

Ky = Vo + OWox (5.19a)
Ky = Wi — OV (5.19b)
T = Py — VixWix (5.19¢)

It is interesting to note that the expressions obtained for Ky and k, are the same for the
two deformation sequences. Though the expressions obtained for the twist 7 are not the
same, the leading orders terms are identical. This can be attributed to the fact that the only
differences between coordinate transformations given by Eqgs. (5.16) and (5.18) are in the
8,4 and the S,, terms.

Substituting the flap-lag-torsion coordinate transformation given by Eq. (5.18) and the
curvatures and twist given by Eqs. (5.19) into Eqs. (5.10)-(5.12) yields the following set of

equations of motion for the deformation sequence flap-lag-torsion:
Flap Equation

— [(El;; — Elyy,) sin O cos (v + 20W,0) + (Bl — Elyy )V, xx €08 20
.2 2
+ (Ely; sin“0g + Ely, cos 05w,
— TX,,( sin Og + ¢ cos Og)] 4«

+ (GJb¢-xV-xx)-x + (WuxT)ﬁx - (V-qu3)-x + qy3<x + pz3 =0 (520)
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Lag Equation
— [(Ely; €08’ 0 + Elyy SIn“BG)V, 0 + (Elzg — Ely, MW, €OS 26
+ (E'CC - El,m) sin 85 cos O(W, .y — 20V,,,)
— TXip( cos O — ¢ sin 8)]
—{GJpd xW.sdx + (Vi T+ (Wi, Qya)d x — Gp3.0+ Pya = 0O (5.21)

Torsion Equation

[GUp(@x = VixW.ux) ] x
+ (Bl — EI,,,,)[(VQ,XX - w2,xx) sin g cos B — v, W, COs 205]
+ TX)1o(W.xx €OS B — V., Sin 65)
+ Qx3 + Vix@ya + W, Q3 = 0 (5.22)

Comparing Egs. (5.2) - (5.4) with Egs. (5.20) - (5.22) reveals thal the structural part of the
flap and lag equations are identical for the two deformation sequences. This can be attri-
buted to the fact that the expressions for the curvatures of the blade are the same for the
two deformation sequences. The only difference evident in the structural part of the torsion
equations given by Egs. (5.4) and (5.22) is in the first term. The quantity in parenthesis
multiplied by the torsional stiffness of the blade GJ,, in each of these equations can be re-
cognized as the twist of the blade 7, which has been shown 1o be different for the two de-
formation sequences. It should be noted that the boundary conditions given by Egs. (5.8)
are also the same for the two deformation sequences. The boundary conditions together
with (5.20) — (5.22) , are used in this study to develop explicit expressions for the equations
of motion of the flexible blade.

The tension T is eliminated from the flap, lag and torsional equations in a manner
similar the approach used in Ref. 47 where, after neglecting higher order terms, the axial

tension equation is expressed as
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Tx= —Pia (5.23)
where p,,, represents the axial load at the elastic axis of the blade due to the rotation of
the blade. Integrating Eq. (5.23) with respect to x and using the boundary condition
T(x = Lp)= O yields:

Ly Ly X
T(x) = _J T, dx = — [J T,xdx—f T, dx]
X 4] 0

X

Lb
= f Pix3 dX — J. Pix3 dx (5.24)
0 0

The system of coupled partial differential equations of motion represented by Egs.
(5.20)— (5.22) is transformed to a system of ordinary nonlinear ordinary differential
equations using Galerkin’s method to eliminate the spatial variable x. In this study, the first
two torsional modes, the first two lead-lag bending modes, and the first three flap bending

modes of a rotating uniform cantilevered beam are used as comparison functions, t.e.

3
WE W= ) )W) (5.25a)
=1
N 2
vIV= qu,(l//)v,(x) (5.25b)
=1
- 2
6= ¢ = ) anW)PX) (5.25¢)

=1

where W(x), V{x) and ® (x) represent the i-th flap, lead-lag and torsional uncoupled rotat-
ing mode shape, respectively. The participation coefficients gs1, Gg2. Qu1. Ay2. Gwr: Qw2
and q, represent the seven generalized degrees of freedom of the fully flexible blade
model.

The uncoupled rotating mode shapes are generated using the first nine exact modes
of a nonrotating uniform beam. The analytical expressions for the nonrotating mode

shapes are taken from Ref 1. The integrals required to calculate the mass and stiffness
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matrices of the [ree-vibration problem for the rotating beam are evaluated numerically
using 20-point Gaussian quadrature. This free vibration problem is solved separately, be-
fore embarking on the aeroelastic computations, and thus it essentially represents a pre-
processing stage.

To apply Galerkin’s method the error residuals associated with the use of Eqs. (5.25) in
the equations of motion must be formed. These are then multiplied by the appropriate
mode shape and integrated over the span of the blade. Galerkin’s method consists of
setting each of these integrals to zero and solving for modal participation coefficients,
which represent the generalized coordinates of the problem.

Multiplying each error residual by the appropriate mode shape and integrating over the

span of the blade yields:

Flap Equation {i=1,2,3)
Lb ~ ~
J. { — [(Elgg — El,,) sin 8 cos O(v. . + 20w, )
0
+ (Ely, — El,,,,)%?xx cos 20 + (El;; sin’f + El,, cOS I,
— TX i sin B¢ + ¢ cos 83)].

~

+ (Gl Vosx + Wi T = Vyys + Gyg) + Pra} W(X) dx = O (5.26)
Lag Equation (i=1,2)
b 2 L 2p v Pl
f { — [(Ely; cos”8g + El,, Sin“O5)V 4 + (Elyy — El,, }dW,, cOS 28
0
+ (Ely; — El,,) sin O cos Oc(W.yx — 26V
~ TX)5( €os O — ¢ sin 65)]..«

+ (= Gl W + VoxT + WGz — Gza) + Pyg} Vi(x)dx = 0 (5.27)

Torsion Equation (i=1,2)
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Lp ~ ~ ~
f {[G‘wa”x_ V*xwlxx)]*x
0

~) ~> ‘ ~ ~
+ (Elr — Bl IV xx — W) SiN B €08 B — v 5 Wiy €OS 26]

+ TX, (Woy €OS B — V.4 SiN 05)

+ axS + ;vxayB + V~Vxxaz3} b (x)dx = 0 (5.28)

where the tilde over the distributed loads indicates that V, w and <~f> given by Egs. (5.25)
have been substituted into the expressions.

it is well known that when approximations such as Eqgs. (5.25) are used to obtain ap-
proximations for the spatial derivatives of w, v and ¢, the quality of the approximations
deteriorates quickly as the order of the derivative increases. This is due to the fact that
with each successive spatial differentiation the errors inherent in the approximations are
amplified. Thus all spatial derivatives higher than second order are eliminated from Egs.
(5.26)-(5.28) by integrating by parts twice using the boundary conditions given by Egs.
(5.8).

Integrating the first integrand in Eqs. (5.27) and (5.26) by parts twice, integrating the
second integrand in Egs. (5.27) and (5.26) and the first integrand in Eq. (5.28) by parts once,

and making use of the boundary conditions given by Egs. (5.8), yields:

Flap Equation (i=1,2.3)

"Ly ~ ~ o~
{ — [(El;; — El,,) sin Og cos DV + 20W,,)
Yo

+ (Ely — Elyp V. €08 20 + (El;, sin“0g + El,,) cos®05)W
— TX)p( sin Og + ¢ cos O5)] W,y

+ (G Vax + Wi T = Voulya + Gya) Wiy + Pra Wl dx = 0 (5.29)

Lag Equation (i=1,2)
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L ~ ~~
j b{ — [(El, 00528G + El,, sin29G)v,xx + (Elyy — Ely, MWy, COS 20
0

+ (Ely — El,,) Sin 8 €08 Bg(W.xx — 26V.x)
— TXp{ cos 0 — ¢ sin05)]1 V, .«

+(- Gde)vx\Tv'xx + ;‘XT + Vv'xax.'s - az3) Vix+ By3vu} dx = 0 (5.30)

Torsion Equation (i=1,2)

Ly ~ ~ ~
J {[GJb(¢vx - V~xwvxx)] cblvx
0

+ (Bl — Elpyp IV xx — W) $IN O €OS B — V. Woy €OS 2051 D,
+ TX, (W, COS O — \~/.xx sin g) ®,

+ (5x3 + ;may:s + V~V~xazs)‘b|} dx = 0 (5.31)

After carrying out the integrations over the blade span, the resulting set of equations
represent a set of seven second order nonlinear coupled ordinary differential equations in
terms of the modal participation coefficients Q1. Qyz. Gws. Gyt Gy2. Qg1 and Gy The
integrations of the error residuals over the blade span is performed using 20-point
Gaussian quadrature. The expressions for w, v and J) given by Eqgs. (5.25) are substituted
into the equations of motion but are not expanded. Instead, they are evaluated numerically
at each blade station required in the numerical integration procedure.

It is important 1o recognize that up to this point the presence of a partial span trailing
edge flap on the blade span has not been explicitly accounted for in equations of motion
of the flexible blade represented by Eqgs. (5.29) — (5.31). The incorporation of the effects due

to an actively controlled flap into the equations of motion is described in the next section.

116



5.2 INCORPORATION OF THE CONTROL FLAP

An aerodynamic surface, modeled as a partial span trailing edge flap located on the
outboard sections of the blade, as shown in Fig. 3, is considered to be an integral part of
the blade. The control surface has a chord length of c.s and a span of L g, with the inboard
edge located a distance x. from the blade root. The control surface is altached to the
trailing edge of the blade by a series of hinges located at a finite number of discrete points
(referred to as “hinge points”) along the trailing edge of the blade. Itis assumed that each
hinge is rigid in all directions except about the hinge axis, about which the control surface
rotates. The hinges adequately constrain the control surface cross-section to a pure rota-
tion in the plane of the blade cross-section.

The presence of actively controlled flap on the blade span must be appropriately in-
corporated into the equations of motion. In this study, the inertial, gravitational, and
aerodynamic effects are included, but the structural effects of the contro! flap are neg-
lected. It is assumed that the additional stiffness provided by the presence of a relatively
small control flap, on the outboard seclions of the btade, has a negligible effect on the
blade deformation. The increase in the local bending and torsional stiffness of blade
cross-sections incorporating a trailing edge flap only directly affects the deformation of the
blade sections outboard of the inboard edge of the control flap; and since the curvature and
rate of twist of these blade sections near the tip are small compared to those at the root,
changes in the curvature and rate of twist due to control flap stiffness are assumed to be
negligible. Thus one may assume that the presence of the flap has a negligible effect the
bending deformation of the blade: and the elastic twist is significantly altered only for
blades relatively soft in torsion. Despite its relatively small size. however, the inertial ef-
fects are included since the mass is located at a considerable distance from the hub and
thus can influence the blade root moment.

The effects of the control flap are accounted for by transferring the distributed loads
acting on the control flap to the elaslic axis of the blade. The total distributed force acting

on the blade can be expressed as:
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—_

Po for 0< X< X

p = Eb + Ec for X.g< X< X+ Les (5.32)
Bb for xes+ Les<x< Ly
where
- A A A
Po = Pox3 €x3 t Ppy3 €y3 + Ppz3 €73 (5.33)

is the distributed force due to the blade loads, and

—

A A A
Pc = Pcxa ©x3 t Pcys €y3 + Pez3 €23 (5.34)

is the distributed force due to the presence of the control flap. The components of Eb are
defined by Egs. (3.127), and the components of Ec are defined by Egs. (3.131).

Similarly, the tota! distributed moment can be expressed as:

Qp for 0 < X< X
q = ab+ac for Yo < X < Xeg+ Leg (5.35)
Eb for xs+Les<x<lty,
where
- ~ A A
Qo = Gox3 €x3 + Apyz €y3 + Apz3 €23 (5.36)

is the distributed moment due to the blade loads, and

—_

A A A
Qc = Gcx3 ©x3 + Ueys €ya + Qczz €23 (5.37)

is the distributed moment due to the presence of a control flap. The components ofab are
defined by Eqgs. (3.129), and the components of EC are defined by Egs. (3.133).

Substituting Egs. (5.32) and (5.35) into the Eqs. (5.29)-(5.31) yields:

Flap Equation (i=1,2,3)

Lb ~ ™~
f { — [(Bly; — Elp,) sin 0 cos (V. x + 20W, 4,)
0
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+ (Elyy — El, )V, €OS 20 + (Ely $in°0g + El,y COS°05) W

Ty $in g + ¢ €08 B)TW,.x

~

+ (Gde)vavxx + vaT ~Vixlpxa t qby3) wa + Puz3 WI} dx

XCS + LCS -~ -~ -~ ~
+ f [( = VixOexs + qcyS) Wix+ pezaWldx = 0
X,

Lag Equation (i=1.2)

Lb ~ ~~
f { — [(El,, cosQGG + By, siHQBG)v,xx+ (El;; — El,y )W, COS 205
0

+ (El; — El,,) 8in 0 €08 O(W.x — 20V xy)

~

— TX|pf cos 85 — ¢ sin05)] V,.x

+(- GJbgb,XW,xx + V-xT + W-xabx3 - qsz) VI’X + pbyBVl} dx

[(W.xQcxa = Gcza) Vix + PeyaVildx = 0

* XCS + LCS ~
+

W
Xes

Torsion Equation {i=1.,2)

Ly ~ ~ o~
J {[GJb(qu_ V=xw'xx)] (Dm(
0

~ 92 o~ o ~ ~
+ (Elry = Bl IV ixx” = Wey ) 8in B €08 B — V. W COS 20519,

+ TX W4y €OS O — Voxx Sin 05 D,

+ (qu3 + vaqby3 + W-xqb23)q)u} dx

[(Aexz + VoxGeys + W.,Qc3) P Jdx = 0

‘XCS+ LCS -~
+ J

XCS
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Chapter Vi

METHOD OF SOLUTION

For both blade models, the system of nonlinear ordinary differential equations of motion
of the isolated blade can be represented by the following vector of size Npoe. the number

of blade degrees of freedom in the model:

To(, Ao, do, . 8 ¥) = 0 (6.1)
The vector ab contains the blade degrees of freedom and a, is a vector containing the trim
variables of the problem. Each row of?b represents the equation of motion associated with
a particular degree of freedom in ab.

In the formulation of the equations of motion, the following quantities were assumed to
be known: the inflow ratio /; the rotor angle of attack xg ; the collective pitch angle 8;; the
cyclic cosine pitch input 8,.; and the cyclic sine pitch input #,s. These five quantities col-
lectively represent the trim settings of the helicopter and appear explicitly in the blade
equations of motion. Therefore, the blade equations equations can not be solved until
these five quantities have been determined.

The trim vector appearing in Eq. (6.1), defined as:
~ ) T
G = {£ ¥R, g, 01, 045} (6.2)

represents the solution 1o a set of nonlinear trim equations which can be expressed in the

following vector form:

f[(ab- Eb, ab- a[, Sy)y=20 (6.3)

The system of trim equations represented by Eq. (6.3) is obtained by enforcing the overall
force and moment equilibrium of the helicopter in steady, level forward flight. The vector

fi also contains an inflow equation. The process of determining the trim variables is re-
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ferred to as the “trim analysis”. Before equilibrium can be enforced at the hub, it is nec-
essary to evaluate the forces and moments at the hub due to blade loading and due to the

forces and moments acting on the fuselage during forward flight.

6.1 ROTOR HUB LOADS

The total force and moment at the hub due to blade loading are obtained by integrating
the distributed loads along the span of the isolated blade in the rotating frame (2" system),
transforming them to the non-rotating hub-fixed reference frame {("1” system), and then
summing the contribution at the hub from each blade in the rotor.

The total force and moment at the btade root due to the inertial gravitational, damping
and aerodynamic loads on the k-th blade, obtained by integrating the distributed loads

along the span of the blade, can be expressed in the "2” system by:
- ! . . A / A A
FrV ) = Fraol¥i) €40 + Frya¥i) €yo + Fraal¥rid) €20
and
- ) A A A
MWy ) = Mpyoldry) €xp + Mgyol¥ry) €yg + Mgaolii) €2,

respectively, where
Uy = ¥+ —— (6.4)

is the azimuth angle of the k-th blade.
Transforming the root force F to the "1” system using the coordinate transformations

defined in Chapter 2 by Eq. (2.5), yields the force at the hub due to the k-th blade

- B - A A
FreW) = FraWi) exs + FrpyaWi) eyq + Frupa(i) ez
where

Frka) = FreaWi) cOS Yy - FRyQ((ﬁ“/k) sinyy
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FrkyrWi) = FralWi) sinyy + Frya(¥y) cos gy

Frkz1W) = Frea¥y)

The total force at the hub due to Ny, blades is obtained by summing the contribution of each

blade
Fu(W) = ) Frad¥d)
k=1

which can be expressed as:

—

FlV) = Fra(d) &y + FHy1(*//)/éy1 + Frgi(¥) e,

where
Ny

Fra®) = D [Fru¥i) €08 Uy — Frygly) siny, ]
k=1
Nb

Fayiy) = Z[anz(l//k) sinyy + Fryo(iy) cosy, ]
k=1
Nb

FHz1(¢’) = FRzz(l//k)
k=1

The moment at the hub due to the k-th blade is given by:

M) = Me¥) + e85 x Falby)

which can be expressed in the “1” system as:

- A A A
Mid¥i) = Mupa(¥i) €xy + Migey i) €41 + My () €54

Carrying out the cross-product yields
Miix1(¥i) = Mpuo¥y) €os ¥, — [Mgys(¥r,) — € Fryo(th, )] sin ¥,

Mikyr = Mra¥i) sinyy + [Mgy,(,) — e F,o(¥,)] cos ¥,
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Mikz1®¥i) = Mgza(¥i) + € Fryal¥i)

The total hub moment due to N, blades is obtained by summing the contribution from each

blade

Nb
KAHW/) = ZMHk(Wk)

k=1

which can be expressed as:

M) = Myr(¥) €51 + Mpgy 1) 841 + Mygs() €24

where

Ny

Mpa(¥) = Z{MRXz(nle)cos ¥y — [Mgy2Wi) — € Frao )] sin}

k=1

Ny

Mugi®) = ) (Mgl $in ¥ + [Myoldi) = € Frzaldi)] 08 ¥}
k=1

Ny

Mrgr) = ) [Mgza¥i)+ € Fryzh)]

k=1

In this study it is assumed that there are four blades in the rotor (i.e. N, =4) and

therefore the azimuth angle of the k-th blade is given by:

Y = l//+—72£{k*1)

6.2 ROTOR AERODYNAMIC THRUST

The total aerodynamic thrust produced by the rotor is required in the inflow equation
to calculate the inflow. The thrust of the rotor is defined as the total aerodynamic force
parallel to the rotor shaft, and is obtained by summing the contribution from each blade.

The z, axis is parallel to the shaft axis; thus the total aerodynamic thrust is given by:
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N, =4

To= Y Fanlth) (6.5)
k=1

where Fn (i, ) represents the z, component of the aerodynamic force at the blade root of

the k-th blade.

6.3 FUSELAGE FORCES AND MOMENTS

The fuselage weight and the aerodynamic drag acting on the fuselage in forward flight
produce forces and moments at the hub which must be in equilibrium with the rotor hub
loads in order to maintain steady level flight. The forces and moments at the hub for a
helicopter with weight coefficient Cy, and an equivalent fuselage flat plate drag area of

fCys are described next.

6.3.1 Forces and Moments Due to Fuselage Weight

Given the weight of the helicopter.
W = CurR%p ,0%R? (6.6)

the weight of the fuselage can be obtained by subtracting the weight of the rotor blades,
which are already accounted for in the gravitational loads. Thus the fuselage weight is

given by:
2 252

The weight acts in the direction of the gravitational vector, which is oriented parallel to
the negative zy axis. The force due to fuselage weight can be expressed in the “1” system

as:
- ) . A
Fwi = — Wi(sinxg e, + cos xg e,4) (6.8)

where the angle xg is the trim rotor angle of attack.
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This force is assumed to act at the fuselage center of gravity, which is located a dis-
tance Zgc below the hub along the negative z, axis, and a distance Xgc in front of the hub
along the negative x, axis, as shown in Fig. 5. The position vector of the fuselage center

of gravity relative to the hub center can be expressed as:
hand A A
frc = — Xec €1~ Zrc €21 (6.9)

The fuselage weight produces a pitching moment about the hub given by:
n - -
Mws€y1 = Tec < Fuw (6.10)

Using Egs. (6.8) — (6.10) yields:

Myt = — We( = Xpe €08 g + Zec Sin 2g) (6.11)

6.3.2 Forces and Moments Due to Fuselage Drag

The parasitic drag acting on the fuselage is given by:

1 2

where V,, represents the magnitude of the resultant air velocity employed in calculating
fuselage drag, and fCy is the area used for the drag calculation. A value of
fCys = 0.01Ag is frequently used in helicopter studies[45], where Ap = 7R? is the rotor
disk area.

Since. for a single rotor helicopter, a substantial portion of the fuselage is beneath the
rotor disk. the effect of rotor downwash is included in defining the total air velocity used in

the fuselage drag calculation. Thus the total air velocity is given by

N

Var = QR — 48,1) (6.13)

It is assumed that the drag force acts parallel to Vg , which is oriented along the unit

vector
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— — *x1 €21
[Varl Vi? + 22 NIEYE

Using Eq. (6.12) and (6.14). the drag force acting on the fuselage can be expressed as:

v
I R A3 (6.14)

- Df A A

For = ————(1é,, — /&,,) (6.15)
TR
VES+H A

where from Eq. (6.12) and (6.13)
D, = %pAQ?RQ(uQ + 23Cy, (6.16)

The center of drag of the fuselage is assumed to be located a distance Zpp below the
hub along the negative z, axis, and a distance Xg, behind the rotor along the X4 axis, as

shown in Fig. 5. The position vector from the hub center to center of drag is given by:

— A A

TFa = Xpa €1 — Zpa €59 (6.17)
The fuselage drag force causes a pitching moment about the hub center given by:
Making use of Egs. (6.15) — (6.18) yields:

Moy = —pa QR i + 22 (Cy, (7 9
Dt = 7PA( N U+ AT HC (W Xep — 1 ZEp) (6.19)

6.4 TRIM ANALYSIS

The biade equations formulated in this study represent the equations of motion of an
isolated blade of a hingeless fixed-hub rotor configuration. In order to generate realistic
values of the vibratory hub loads, the rotor angle of attack and the pitch settings of the rotor
must represent meaningful values corresponding to those encountered by a helicopter in
steady forward flight. The trim variables must be selected such that the rotor generates

the forces and moments required by a helicopter with weight coefficient Cyw and equivalent
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fuselage flat plate drag area fCy; to maintain steady, level flight for an advance ratio u. This
is accomplished by enforcing overall force and moment equilibrium of the helicopter for
any given flight condition. This is usually denoted as propulsive trim[11].

A helicopter in free flight has a total of six degrees of freedom, three translational and
three rotational; consequently, three force and three moment equilibrium equations have
to be satisfied. In this study, however, the tail rotor is not modeled; therefore the tail rotor
pitch setting is not considered as a trim variable, and lateral force and yawing moment
equilibrium are not enforced. It is assumed that the tail rotor pitch setting can be specified
such that yaw equilibrium and lateral force equilibrium are maintained. Furthermore, the
main rotor shaft angle in the lateral plane (i.e. ¢4, the sideways tilt of the rotor axis) is
excluded as a trim variable since it has very little influence on helicopter vibrations[45].

Thus, only four equilibrium equations: two force equilibrium equations, one in the ver-
tical (z4) direction and one in the longitudinal (x4) direction; and two moment equilibrium
equations, one in roll (about the x, axis) and one in pitch (about the y, axis); have to be
satisfied. The equilibrium equations are formulated in the “1” system with its origin at the
hub center Oy, which represents the non-rotating, hub-fixed reference system (see Fig. 6).
Together with the inflow equation, there are a total of five trim equations which must be
solved for the trim variables in Eq. (6.2). These equations are assembled into the vector
of trim equations represented by Eq. (6.3).

The five trim equilibrium equations are:

{1) The inflow equation for a helicopter rotor in forward flight

f(1) = CT+2\"};12+ 72 (utan ag—7) =0 (6.20)

where constant inflow is assumed in this study for convenience. Equation (6.20)is a steady
state result from the steady far field momentum equation[25].

The thrust coefficient is defined as:

(6.21)
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where Tg is the total thrust produced by the rotor, and is given by Eq. (6.5).

(2) The rolling moment equation is obtained by setting the total rolling moment to zero

This is justified, since the rotor tilt angle in the lateral plane and the tail rotor are both not
modeled.
(3) The pitching moment equation is obtained by enforcing pitching moment equilibrium

about the hub

ft(3) = MHY1 + MD' + wa = 0

where My, is the total hub moment due to blade loads, My is the pitching moment due
to the fuselage drag given by Eq. (6.19) and My is the pitching moment due to the fuselage
weight given by Eq. (6.11). Substituting Eq. (6.19) and (6.11) into the pitching moment

equation yields:

ft(3) = MHy1 - Wf( - XFC cos A + ZFC sin :(R)

+ %pAQQRngd,\/ u2 4 52 (G Xep — uZpp) = O (6.23)

{4) The vertical force equation is obtained by enforcing force equilibrium in the z4 di-

rection. Using Egs. (6.8) and (6.15), the vertical force equation can be expressed as

A

f(4) = Fyy;q — Wicos ag — Dy =0

u2 + A2

where the fuselage weight W, is given by Eq. (6.7) and the fuselage drag force D, is given
by Eq. (6.12) . Substituting Eq. (6.12) for the fuselage drag into the vertical force equation

yields:

1(4) = Frgt = Wy o8 25 = 2-ppQ7RCq i/’ + 2 = 0 (6.24)

128



(5) The longitudina! force equation is obtained by enforcing force equilibrium in the x,
direction (see Fig. 6). Using Egs. (6.8) and (6.15), the longitudinal force equation can be

expressed as

"
e
Vil + 2

f[(S) = FHX1 + Df _Wf Sin 1R = 0
where Fy,,4 is the longitudinal hub force due to blade loading. Substituting the fuselage

drag given by Eq. (6.12) into the longitudinal force equation yields
_ 1 252 2, 2 . _
ft(5) = FHX1 + ?pAQ R defu\f,u + 27 = Wf Sin C(R =0 (625)

It is important to emphasize at this point that only the constant part of the rotor loads
(i.e. their average value over one rotor revolution) needs to be in equilibrium with the
fuselage forces and moments for trim to be established. This aspect of trim is discussed
in greater detail in the section of this Chapter describing the solution procedure used in
this study.

It is evident from Egs. (6.20) — (6.25) that the trim solution of the helicopter depends
upon the blade degrees of freedom through the rotor forces and moments, which are
functions of the blade response. Therefore the trim and response problems are closely
coupled and cannot be solved independently. One possible approach involves solving
each set of equations separately, but in a coupled manner, using successive approxi-
mations for the solution of the other set of equations. This is an iterative procedure in
which an approximation of the blade response is used to solve for an approximate trim
solution. This trim solution is then substituted back into the blade equations to obtain an
improved approximation of the blade response. This procedure is continued until the trim
and response solutions converge. Previous research at UCLA has shown that this iterative
procedure may be inefficient[50,45].

Therefore in this study an alternative procedure for solving the coupled trim aeroelastic

response solution is used. The trim and response solutions are obtained simultaneously
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by the harmonic balance technique. This analysis procedure is very similar to the proce-

dure initially used in Ref. 50.

6.5 COUPLED TRIM AND RESPONSE CALCULATION USING THE HARMONIC BALANCE
TECHNIQUE

In the harmonic balance technique, the solution of a periodic system of ordinary differ-
-ential equations in the time domain is replaced by a solution in the frequency domain.
Replacing the time domain solution by a frequency domain solution is justified, since only
the periodic nonlinear steady state response of the system is required. The harmonic
balance technique enables one to replace a system of ordinary differential equations of
motion in the time domain by a system of algebraic equations with constant coefficients in
the frequency domain. The transformation to the frequency domain is accomplished by
carrying out a Fourier series expansion of each differential equation and each corre-
sponding blade degree of freedom. Since a Fourier series expansion is only strictly valid
for periodic functions, the harmonic balance technique is suitable for periodic systems
only. The equations of motion of an isolated blade, in steady forward flight, represent a
periodic system; thus the harmonic balance technique can be applied to the problem of
determining the steady state trim and aeroelastic response solution under steady flight
conditions. The harmonic balance technique is not applicable to flight conditions involving
transient flight maneuvers or gusts.

Any periodic function with a fundamental frequency of 1/rev (i.e. i + 21)= ) can

be represented exactly by an infinite Fourier series expansion of the form

) =1y + Z[fnc cos(ny) + f sin(ny )] (6.26)

n=1

where

1 2n
o = —f ) dir (6.27a)
2n o
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2n
o= %f fWicos(ny)dy  n =12 ... oo (6.27b)
0

27
frs = 0 s sin(m ) dy n=12 .., 00 (6.27c)

T
represent the Fourier coefficients of the series expansion and can be derived from Eq.
(6.26) using the orthogonality of cosine and sine functions.
It is usually both impractical and unnecessary to use the infinite series expansion re-
presented by Eq. (6.26) to capture the behavior of the periodic function f). Usually, very

good approximations can be obtained by truncating the expansion to a sufficient number

of terms

NH
W) =ty + Z[fnC cos(m¥) + f.¢ sin(niy)] (6.28)

n=1

The number of harmonics retained Ny, determines the quality of the approximation. Often
the higher harmonics are small and can be neglected. However, when Eq. (6.28) is em-
ployed in the solution of a periodic system, the number of harmonics retained in the sol-
ution must be at least as large as the highest harmonic present in the periodic forcing
function. Equation (6.28) enables one to represent of a scalar function of Y by a set of
(14 2Ny) coefficients. Equations (6.28) and (6.27), which can be extended to the vector
case. are used to develop the harmonic balance technigue.

In steady forward flight the blade response is periodic with a fundamental frequency of
1/rev (i.e. ab(l;'/):ab(l,ll + 27)) and thus it can be approximated by a Fourier series expan-
sion containing Ny, harmonics

Ny
abO + Z[abnc cos(ny) + abns sin(nyr)] (6.29)

n=1

~

9

where aoo represents the constant part of ab and abnc and abns represent the cosine and
sine amplitudes, respectively, of the n/rev harmonics. Collectively ab0~ abnc and abns rep-

resent a total of (1 + 2N,,) vectors, each containing a total of Npge coefficients.  These
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vectors can be considered as the coefficient vectors of the Fourier expansion of the blade
degrees of freedom.

The number of harmonics Ny, retained in the expansion of the blade degrees of freedom
determines the accuracy of the response solution. There are two primary factors which
must be considered when selecting Ny,: First, since the response solution is used to de-
termine the vibratory hub loads, which are predominantly Ny/rev, at least N, four harmon-
ics must be retained; and secondly, to properly capture the effects of the various N/rev
harmonic control inputs used to reduce vibrations, Ny, should be at least one greater than
the highest harmonic used in the control input N, ,,. Thus, the number of harmonics re-

tained is determined from the following expression:
Ny = max(Ny, Npyay) + 1

From Eq. (6.29), the first and second derivatives of ab can be expressed as:

NH
qp = Z[ ~ NGgne SINMY) + NGyps COS(NY)] (6.30a)
n=1
. N
=~ 2= ‘ 2z .
q, = Z[ — N% Qppe COS(NY ) — N° Qg Sin(NYr)] (6.30b)
n=1

Thus the blade response can be completely described in terms of the (1 + 2N coefficient
vectors represented by abo, abnc and abns. These vectors collectively represent a total of
{1+ 2Ny)Npoe coefficients and represent the new degrees of freedom of the problem. The
blade response solution in the frequency domain consists of finding the coefficient vectors
abo‘ abnc and abns such that Eqg. (6.1) is satisfied, which is coupled with finding the vector
of trim variables at such that Eq. (6 3) is satisfied.

The blade equations and trim equations can be expressed explicilly in terms of the
blade expansion coefficients by substituting Egs. (6.29) and (6 30) directly into Egs. (6.1) and
(6.3). After performing various trigonometric and algebraic manipulations, collecting the
constant part and the various harmonics for each equation and putting them in a series

representation, the trim and blade equations can each be expressed in the form:
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NH(

= fio+ ) [hn COS(N) + fog sin(ny)] = O (6.31)
n=1

fo = foo + D [fonc COS(Y) + fyng sin(ny)] = O (6.32)
n=1

The integers Ny and Ny, represent the number of harmonics which arise in the trim
and response equations, respectively, from the substitution of the Fourier series expansion
for the blade degrees of freedom given by Eq. (6.29) into the equations. The product of two
harmonic signals with frequencies w4 and w,, respectively, can be expressed as a sum of
two harmonic signals with the respective frequencies (wy + wy) and (w, — w,) ; since the
trim and blade equations contain products of the blade degrees of freedom, the integers
Nyt and Ny, will generally be larger than Ny,

As stated previously, trimming the vehicle only involves enforcing the equilibrium of the
constant part of the forces and moments acting on the vehicle, thus only the constant part

of Eq. (6.31) needs to be satisfied
T =0 (6.33)

Equation (6.33) represents a system of five algebraic equations in terms of the five trim
variables and the Npoe(1 + 2N,) blade response coefficients.
However, in order to satisfy Eg. (6.32), it is necessary that the constant part and the

various n/rev harmonics be set equal to zero, i.e.

=12 ... Ny (6.34b)

Equations (6 34) represents a set of Noor(1 + 2Ny,) coupled nonlinear algebraic equations
in terms of the five trim variables and the Npoe(1+ 2Ny) blade response coefficients. To
ensure that the number of equations is equal to the number of unknowns, N, is set equal

to Ny Thus Egs. {6.33) and (6.34) collectively represent a coupled system of
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[5 + Npoe(1 + 2Ny,)] algebraic equations in terms of [5+ Npor(1+4 2Ny)] trim and blade
expansion coefficients variables. Through the use of harmonic balance technique, the
solution of a coupled system of Npge ordinary differential equations and five trim equations
in the time domain has been transformed to the solution of a coupled system of
[5+ Npor(1 + Ny)] algebraic equations in the frequency domain. Though the dimension
of the problem has increased substantially, it is generally much easier to solve a coupled
system of nonlinear algebraic equations than a smaller system of coupled nonlinear peri-
odic ordinary differential equations. There are many packaged programs available which
solve systems of nonlinear algebraic equations. In this study the IMSL{58] subroutine
DNEQNF., a Newton based method which uses finite differences to form the Jacobian, is
used to obtain the coupled trim and response solution.

Unfortunately, the formation of the explicit expansions given by Egs. (6.31) and (6.32)
represents a formidable task (even by computer algebra) due to the plethora of higher or-
der terms involving products of the blade degrees of freedom resuiting from the assump-
tion of moderate deflections. Therefore, the formation of Egs. (6.31) and (6.32) is done
numerically. Examination of these two expressions reveals that they represent Fourier
expansions of the trim and response equations. Therefore the expansion coefficients in
Eqgs. (6.31) and (6.32) represent Fourier coefficients; use of the definition of these coeffi-
cients presented in Egs. (6.27) can be used to numerically determine the value of each of

these coefficients. Therefore, Eqs. (6.33) and (6.34) can be expressed as

- . Lo L -
fo = ‘;Tf (T Qo Ao QS Y) dw = O (6.35a)
it O
on. -
~ 1 Lo -
i O
- 2n. . o -
fone = %J- fo(Qp. Qo Qo Gr. &) cos(ny)dy = 0 n= 1.2, Ny (6.35c)
0
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B on oo
1 L . =
fons = ?J' fo(Qb. Qo Ap. Gr. S: ¥) sin(n)dy = 0 =12 Ny (6.35d)
0

Gaussian quadrature is used to evaluate the integrals in Egs. (6.35), because it mini-
mizes the number of integration points for a given accuracy[2]. The expansion of the blade
degrees of freedom represented by Egs. (6.29) is substituted into Eqgs. (6.35), but is not ex-
panded; instead, it is evaluated numerically at each azimuth angle ¥ required in the nu-
merical integration scheme. In this study, 30 Gaussian integration points are used to

integrate over one rotor revolution.

6.6 CALCULATION OF THE 4/REV HUB SHEARS AND MOMENTS

For a four bladed rotor in steady flight, the vibratory hub loads are predominantly 4/rev
in the fixed system. In this study, various optimal control strategies are employed to si-
multaneously reduce the 4/rev hub shears and moments. The amplitudes of the 4/rev vi-
bration components are obtained from a harmonic analysis of the hub loads. IfEH(u'/) and

M (i) represent the total force and moment, respectively, at the hub obtained by summing

the contribution from each blade in the fixed system, then

—_ 27,
Frasc = | Ful¥)cos ay &y (6.362)
0

—- 27
Frss = | Frl@)sin 4y ay (6.360)
0

represent the cosine and sine amplitudes. respectively, of the 4/rev hub shears. Similarly,

- n

Mysc = %f M) cos 4y dy (6.37a)
0

- 2n .

Mass = 7| Mu)sin 4y & (6.37b)
0

represent the cosine and sine amplitudes, respectively, of the 4/rev hub moments.
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6.7 LINEARIZED STABILITY

In this study the stability of the periodic system, linearized about the time-dependent
equilibrium position, is determined from Floquet theory[13]. Linearizing the blade

equations about the nonlinear time-dependent equilibrium position yields

1@ + Alp) = [M(@)]ATy + [C(A)AT, + [K(@p)IAT, + hot. = 0 (6.38)

where the fact that?b(ab)= 0 has been used. The quantity Aab represenis a small pertur-

bation from the time dependent equilibrium position, and
[M] = of/cay

[C] = éfpléay

(K] = éffcay

are the mass, damping, and stiffness matrices, respectively, of the linearized system.

The linearized system given by Eq. (6.38) can be expressed in the first order state space

form

= [Aly (6.39)

< |-

where the state vectorv is defined as
- =T L2T,7
y = {Adp Adp}
and the system matrix [A] is defined as

(0] {1

[A] = » »
~[MIT'K] - [M]T'C]

In hover, the system matrix [A] is constant, and thus the eigenvalues of [A] determine
system stability. If /'.J ={+ iw, is the j-th eigenvalue of [A], then the system is

assymptotically stable ih’,’J < 0 for all j.
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In forward flight, however, the system matrix [A] is periodic with a period of one rotor
revolution (i.e, [A)] = [A(¥ + 2r)]). The stability of the periodic system can be deter-
mined using Floquet theory from the eigenvalues of the state transition matrix at the end
of one period. According the Floquet theory[13], the characteristic exponents
A

= CJJ_riw of the periodic system are related to the characteristic multipliers

j |

A= ZJ + iQ] of the state transition matrix at the end of one period [®(2r, 0)] as follows:

]
1 52 2

_ -1,
, = +tan (7—) (6.40)
where 7 = 2rn is the non-dimensional rotor period. The linearized periodic system is
assymptotically stable if {; < 0 for all j.

The state transition matrix at the end of one period can be calculated by numerically
integrating Eq. (6.39) over one revolution n times, where n = 2Npqr is the dimension of the

linearized system in state space form, using the initial conditions
V(0) = {84, 8 .. Sp}' forj=1.2 ..n (6.41)

The quantity 6,1 is unity when i=j and zero otherwise. Solving the system given by Eq.
(6.39) using the initial condition vector VJ(O) yields the j-th column of the state transition
matrix.

For numerical efficiency, the task of integrating the system is done so that the n inte-
gration passes are carried out simultaneously; this approach is commonly denoted the
single-pass method[4]. The single-pass version of the classic n-pass algorithm consists

of numerically integrating over one revolution the n? system represented by

[A] [0] . .
[0] [A] . L
, . _ 1 (6.42)
[A] (O]
(01 [A]

using the initial condition vector
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Y(0) = {¥1(0) 30) . yioy" (6.43)

where 71(0) is defined by Eq. (6.41). The solution of the system represented by Eq. (6.42)
using the initial condition vector given by Eq. (6.43) yields all n columns of the state tran-
sition matrix simultaneously.

In this study the numerical integration of the system given by Eq. (6.42) is accomplished
using DE/STEP, a general purpose Adams-Bashforth ODE solver[48]. It is important to
note that the implementation of the single-pass algorithm does not require the coding of

the n2 x n2 matrix in Eq. (6.42), but only the coding of the n x n system matrix [A]
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Chapter VII

VIBRATION REDUCTION USING ACTIVE CONTROLS

The vast majority of helicopter vibration reduction studies
[5.23,27,34,40, 43,44, 49,50,51,56,57] to date have employed control strategies based on
frequency domain formulations of the control problem. The periodic nature of the blade
response in forward flight is used to transfer the control problem from the time domain,
where it is described by a set of differential equations with pericdic coefficients, to the
frequency domain, where it is governed by a set of algebraic equations with constant co-
efficients. However, since the periodic assumption is only valid under steady state condi-
tions, the control solutions obtained are only applicable toward the reduction of the
vibration levels experienced in steady flight.

The control strategies are generally based on the minimization of a performance index

that is a quadratic function of the vibration magnitudes and control input amplitudes.
ST S =7 = =T -
J= 2, [W1Z, + u [W, ]y, + Au, [W,]AY, (7.1)

where Au, = U, —ﬁ,_,. The vectors E, and U, contain the cosine and sine amplitudes of the
vibration and control input harmonics, respectively, during the i-th control step. The in-
dices on both the vibrations and control reflect the discrete-time nature of control strate-
gies based on frequency domain formulations of the control problem. The time increment
(or control step) t; = At between control updates must be sufficient to allow the system to
return to a steady state condition. In a real-time application of feedback contro! on an ac-
tual helicopter, t; must provide a long enough time sample of the vibration levels to prop-
erly measure their cosine and sine amplitudes, which are used as feeback to the controller.
Generally, the time increment is at least one rotor revolution[24,45].

The matrices [W;]. [W,] and [W,] in Eq. (7.1) are weighting matrices on the vibrations,

control and rate of change of control, respectively. Constraints may be placed on the
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magnitude of the control update Aui to ensure controller stability under rapidly changing
conditions. The weighting matrices are typically diagonal, in which case J represents the
weighted sum of the mean squares of the vibrations and controt. The relative weightings
on each of the parameters can be changed to vary their relative importance.

The optimum control law is obtained by taking the gradient of J given by Eqg. (7.1) with

respect to the control _G, and setting the gradient equal to zero

=)

J

u

-0 (7.2)

(o ¥

The resulting set of equations are solved for the optimal control denoted by U,‘ , v;/here
“optimal” refers to the control input which minimizes J during each control step.

in the case where all the parameters in the model are known, a deterministic optimal
control strategy is obtained from the solution of Eq. (7.2). However, with unknown, esti-
mated parameters, the certainty-equivalence principle may be applied: the deterministic
control solution is used with the estimated parameter values; otherwise, a cautious con-
troller is obtained by minimizing the expected value of the performance index J with re-
spect to the control. In this study, only deterministic controllers are considered; i.e.. it is
assumed that both the control input and the resulting vibration levels are known without
error.

Before J can be minimized with respect to the control input, it is necessary to first ob-
tain a model of the system response, represented by E , to the control. Two linear,
quasi-static. frequency domain representations of the helicopter response to control are
commonly used[5,23,27,34,40, 43,44, 49,50.51,56,57]. The first is a global model which as-
sumes linearity of the system over the entire range of control application; and the second
is a local model which is based on a linearization of the system about the current control.
Both models utilize a transfer matrix, usually denoted as [T], to relate the cosine and sine
amplitudes of the control harmonics to the cosine and sine amplitudes of the vibration
harmonics. This concept of a linear, quasi-static. frequency domain representation of the

relationship between harmonics of the vibratory response and the harmonics of the control
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input was first introduced in Ref. 30, where the notation [T] for the transfer matrix was first
used.

The transfer matrix can be interpreted as the Jacobian of the system response to the
control input which is required in a Taylor series expansion of the response about some

control input u,

Z(i) = Z(Ug) + [T(U)] (G —Ty) + hot

where

N
cllNl

(r] =

(o7

in the global model, where linearity is assumed over the entire range of control appli-

cation, the Taylor series expansion is evaluated about a zero control input (i.e., Uo =0)

Z, = Zy+ [Tolu (7.3)

where 20 represents the baseline (uncontrolled) vibration levels. In this model the transfer
malrix is evaluated about a zero control input, and is assumed to be constant over the
entire range of control application.

Substituting Eq. (7.3) into Eq. (7.1) and minimizing with respect lo the control yields the

global controller

—%

U = — [D] ([Tl IW,1Z, — [W,T0! ) (7.4)
where
[Do] = (Tol TWZI[Tol + [W,] + [W,] (7.5)

Equation (7.4) is in the form of an open-loop controller[24] where the control during each
control step is determined by the uncontrolled vibration levels EO, In the case where the
rate of change of control is not penalized (i.e., [WA]=[0)]) the controller converges in a

single step.
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Feedback can be introduced into the global controller by expressing the global system

model in the equivalent form
Z,= Zy + [Tod (U =) (7.6)

which was obtained by evaluating Eq. (7.3) for two successive control steps and subtracting
the two expressions.

Substituting Eq. (7.6) into the performance index J and minimizing with respect to con-

trol yields
U= (Do) ([Tl TW21Z, 1 — [Ws TULs
— [To] TWZI[Tolur 4} (7.7)

where [Dg] is given by Eq. (7.5). Equation (7.7} is in the form of a closed-loop controller
where the control input during each control step is determined by feedback of the meas-
ured vibration levels of the previous control step. Equation (7.7) is denoted as the feedback
form of the global controller.

if the system were truly linear, then the open-loop form of the global controller given
by Eq. (7.4) would yield the true “optimal” input {in the sense that J is minimized). However,
the system represented by a helicopter in forward flight is inherently nonlinear due to
moderate blade deflections, which introduces geometric nonlinearities into the system.
The use of the feedback form of the global controller given by Eq. (7.7) should yield better
vibration reduction in the presence of system nonlinearities. However, it is reasonable to
expect that a controlier based on a local system model, which is based on a linearization
about the control, would produce the best vibration reduction.

The local system model is obtained by linearizing the system about the curreft ephmrol

input

El = 21#1 + [T¢-1](G|—G|—1) (7.8)
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In this case the transfer matrix is assumed to be a function of the current control input
u_y.
Substituting the local system model into the performance index and minimizing with

respect to the control yields the local controller

U= = [0 T T ) W12 — (WL 0
— [T IO, Jur ) (7.9)
where
[D1] = [Ty 1 IWLI0T 1] + [W,D + [Wa] (7.10)

Equation (7.9) is in the form of a closed-loop controller[24] where the control input during
each control step is determined by feedback of the measured response during the previous
control step. Comparison of Eq. (7.9) with the feedback form of the global controller given
by Eq. (7.7) reveals that the only difference between the two controtlers is that the transfer
matrix [T] must be updated after each control step in the case of the local controller.
Updating the transfer matrix should improve the controller performance due to the nonlin-
earity of the system.

Detailed derivations of the global and local controllers presented above, along with

their cautious counterparts, are presented in Ref. 24.

7.1 REDUCTION OF THE 4/REV HUB SHEARS AND MOMENTS

in this study. the deterministic global and local controllers are employed to produce
simultaneous reduction in the 4/rev hub shears and moments. In this case the vibration
vector Z, contains the cosine and sine amplitudes of the 4/rev hub shears and moments
z

Zy

(7.11)

N
I

where
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7.2 CONTROL INPUT FOR VIBRATION REDUCTION

In the present study, vibration reduction in forward flight is uniquely implemented
through an actively controlled trailing edge flap on the blade. To guarantee a periodic
blade response, only periodic control inputs with a fundamental frequency of © are con-
sidered. In this case the control flap deflection angle of the k-th blade can be expressed
as a sum of harmonic signals with frequencies that are integer muitiples of the rotor fre-

quency

N

max

504 = ) [ cosNU,)+ Sy sin(N)] (7.12)
N=2

where N, represents the highest harmonic used in the control input signal. The 1/rev
input harmonic is intensionally excluded since it was decided to not disturb the trim cyclic
pitch inputs.

In the present study, the four blades are assumed to be identical. To ensure that all four
blades track, it is assumed that the control flap on each blade executes the same motion,
but shifted in phase by the angle between the blades (ninety degrees in the case of a four
bladed rotor.) Thus the control input for vibration reduction using the global or local con-
trollers can be represented by the vector containing the cosine and sine amplitudes of the

various N/rev input harmonics

T

u = {‘Sch (SNS’ 5(Nmax)o 5(Nmax)s} (7.13)

Conventional individual blade control {IBC), which relies on oscillating the entire blade,
is also implemented in this study. purely for comparison purposes. In the iIBC case the

total pitch input is given by

Opc(lj/k) = 00+ 91C COS(Q’/k)+ 615 Sin(l}/k)'{‘ 9|8c(ullk) (714)
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where

N

max

018c¥i) = Z [Onc cos(NYr, ) + By sin(Ny, )] (7.15)

N=2

is the IBC pitch input. The control input vector for IBC is defined as

o T
u = {Hch 0Nsv SR B(Nmax)c' B(Nmax)s} (7.16)

7.3 TRANSFER MATRIX CALCULATION

As mentioned previously, the transfer matrix [T] can be interpreted as the Jacobian of
the vibratory response with respect to the control input. Since the blade response solution
and the vibration levels are obtained numerically, the sensitivity of the system to control
must also be determined numerically. Thus, in this study, the transfer matrix is calculated
numerically one column at a time using finite differences. If the small change in the blade
response due to a small perturbation in the control input was neglected, however, ap-
proximate analytical expressions for the elements of the [T] matrix could be developed.

In the case of the global controller, the transfer matrix is evaluated about a zero control
input. The j-th column of the transfer matrix is formed by setting all elements of the control
input vector to zero except the j-th element, which is set to some small value, say 0.01
radians. The resulting change in the 4/rev vibration levels from their baseline values is
calculated and then divided by the magnitude of the control input, 0.01 radians, yielding the
j-th column of the transfer matrix.

In the case of the local controller, which is based on a linearization of the system about
the control, the transfer matrix is evaluated about the current control. The |-th column of
the transfer matrix is calculated by adding a small increment, say 0.01 radians, to the j-th
element of the current control vector. The resulting change in the vibration vector is di-
vided by the value of the small increment, 0.01 radians, yielding the j-th column of the

transfer matrix.
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7.4 CONTROL POWER REQUIREMENTS

Operating the control surface actuators for vibration reduction will of course require
power from the helicopter powerplant. It was postulated that a suitable measure of the
power required will be provided by the instantaneous power required to drive a single
control flap, averaged over one rotor revolution, and multiplied by the number of blades.
The instantaneous power consists of the product of the instantaneous values of the control
surface hinge moment M;(y, ) and the angular velocity of the control surface about its hinge
5((}/k)A Thus the power required to implement control using an active control surface on

each blade is defined as:

N, =4
2n
1 .
Pos = 0 5| L= M) 8] dv (7.47)
k=1 "0

The negative sign in Eq. (7.17) accounts for the fact that the instantaneous power is defined
as positive when the required control torque and the angular velocity are in the same di-
rection. The hinge moment Ms has been defined as the net moment about the control
surface hinge due to the loads on the control surface. Thus the actuator must supply a
counter torque equal to — Ms(y/, ) in order to implement the control.

Both M;(y,) and 5(1_."/k) represent harmonic signals, and when there is a phase difference
between these two harmonic signals (which will generally be the case}, then the instanta-
neous power will be negative over some portions the cycle. Negative power has no
meaning in this context, however. since the helicopter powerplant cannot accumulate
power. Therefore, for the regions in which the integrand in Eq. (7.17) is negative, which can
occur over a significant portion of the rotor revolution[44.45], the integrand is set equal to
zero.

In addition to the power required to drive the control surfaces, additional power may
be required to drive the rotor. It is noteworthy that introduction of the control inputs to the
blade will modify the blade loads and thus the required rotor torque can also be affected.
Furthermore, the implementation of control could reduce the rotor power requirements. in

the flight tests conducted in Ref. 57, a small decrease in rotor power was observed when
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HHC was implemented. This saving in power may offset the power required to drive the
control surfaces. The rotor power is defined as the average power over one rotor revo-

lution required to drive the rotor at a constant angular velocity Q2

27
Pe = 2 [ = Myp(¥)] dy (7.18)
4]

2n

where My,,() is the total yawing moment about the hub. The negative sign in front of
M,,4(¥) is due to the fact that it represents the torque about the rotor shaft due to the
loading on the blades, and therefore the power plant must supply a torque equal to
( — My;4) to maintain a constant angular velocity. Equation (7.18) can be used to calculate
the rotor power in absence of flap control inputs as well as when the control is imple-
mented to determine any changes in rotor power.

A third kind of power requirement must also be considered. Since the blade loads are
affected by the flap inputs, the power required to drive the pitch link actuators for helicopter
control may also be affected. Therefore, the change in power required for helicopter con-
trol must also be taken into account. The power required for helicopter trim (i.e. trim

power) is defined as:

Ny =4

27 .
Pirim = 2 2_1”“[ [- MRxB(‘)”k)gpc(U[’k)] d‘fl/k (7.19)
k=1 770

where Mg, (1)) represents the torsional moment about the root of the k-th blade. For the
regions in which the integrand in the above expression is negative, the integrand is set
equal to zero. Equation (7.19) can be used to calculate the trim power both with and with-

out flap control inputs to determine any changes in trim power requirements.
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Chapter Viil

MODEL VERIFICATION

Before pursuing the principal goals of any analytical study it is crucial to first validate
the analytical model and solution procedure developed in the study. This is best accom-
plished through comparisons with other investigations with comparable analytical models.
In the present study, comparison of trim and blade response results can be used to test
both the validity of the equations of motion as well as the solution procedure implemented.
Furthermore, for equations of motion presented in explicit form, as they are in this study,
a direct term by term comparison can be made in order to verify the expressions and
identify any differences which might affect the resuits.

In addition to trim and response results, comparisons of blade stability results in for-
ward flight can also be used as a reliable test of the accuracy of the equations of motion.
it is well known that blade stability results are much more sensitive to the higher order
terms in the equations of motion than the trim and response results. Since the vibratory
hub loads can also be very sensitive to these higher order terms, it is important to carry
out stability comparisons to properly ensure the validity of the analytical model employed
in this study before proceeding to the calculation of the vibratory hub loads.

There are no results available in the literature against which blade response and sta-
bility, including the effect of the control surface, could be validated. Though the controlla-
ble twist rotor investigated in Ref. 28 utilized a servo flap, it was implemented on an
articulated blade, in contrast to the hingeless blade modeled in the present study. Thus,
validation of the blade model without the contro! flap is the best that can be conducted at
present. But since the control flap is incorporated into the blade model in a manner con-
sistent with the overall problem formulation, model validation without the flap should still

lend credence o the entire blade model.
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8.1 VALIDATION OF THE OFFSET-HINGED SPRING RESTRAINED BLADE MODEL

The offset-hinged spring restrained blade model utilized in Ref. 50 to investigate the
active control of helicopter aeromechanical and aeroelastic instabilities is almost identical
to the model used in the present study. The inertial loads were obtained using
D’Alembert’s principle and Greenberg quasisteady aerodynamics are used to calculate the
aerodynamic loads. However, the reverse flow model and solution procedure used in Ref.
50 differ from those used in the present study. In Ref. 50 the sign on both the drag and the
lift switch sign inside the reverse flow region, as opposed to setting the lift to zero, which
is done in this study. Fiap trim and quasilinearization was used in Ref. 50 to obtain the
majority of the trim and response results. However, a version of the harmonic balance
technique, similar to the procedure used in this study, was also employed to investigate the
effect of the solution procedure on the trim and response results.

Although the model of Ref 50 incorporates a rigid fuselage to investigate coupled
rotor/fuselage instabilities, the fuselage degrees of freedom were set to zero in the trim
and response solutions. Though the solution procedure used in Ref. 50 differs from the
method used in this study, the equations of motion were essentially identical; therefore the
trim and response results obtained in Ref. 50 should be comparabie to those obtained in
the present study.

Blade stability results were also obtained in Ref 50. It is well known that such results
are a good indicator of the accuracy of the mathematical model, because blade stability is
sensitive to higher order terms. The method used to compute the stability results in Ref.
50 was similar to that employed in the present study.

In Ref. 50 the forces and moments acting on the blade were formulated explicitly, thus
allowing a direct term by term comparison with the expressions of this study. Comparison
of these expressions reveals that the two sets of expressions are almost identical except
for a few terms of the highest order retained in the ordering scheme. While the ordering
scheme used by Ref. 50 was identical to the one used in this study, there are a few terms
that were not included in the expressions of Ref. 50 which should have been retained based

on a consistent application of the ordering scheme. However, these terms are very small
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and have little or no effect on the trim and blade response solution: but they may have a
minor effect on the blade stability results.

To ensure that the explicit expressions are implemented correctly in the computer
analysis program, trim, blade response, and stability results were generated and com-
pared with those of Ref. 50. First the coupled flap-lag portion of the blade model is vali-
dated by comparing it to the coupled flap-lag stability boundaries in hover and the coupled
flap-lag response solution in forward flight. Next, the coupled flap-lag-forsion problem is
validated by comparing it to the coupled flap-lag-torsional trim and blade response results

in forward flight. Finally, stability results are compared.

8.1.1 Coupled Flap-Lag Problem

Reference 50 compared flap-lag trim, blade response, and stability results with Ref. 8
to validate the flap-lag portion of the blade model. In the investigation of the effects of
unsteady aerodynamics in rotary-wing aeroelasticity presented in Ref. 8, an offset-hinged
spring restrained blade model was utilized with flap and lead-lag dynamics only. The
aerodynamic loads were based on both Greenberg unsteady and quasi-steady aerodyna-
mics, but with the noncirculatory portion of the lift and moment excluded. The blade model
of Ref 8 should be similar to the mode! of this study with the torsional degree of freedom
and the noncirculatory portion {(apparent mass terms) of the aerodynamic loads removed;
this was also concluded in Ref. 50. Therefore, flap-lag results generated using the model
of the present study are also compared with the results presented-in Ref. 8.

By setting the non-dimensional fundamental rotating torsional frequency of the blade
equal to a sufficiently high value, i.e. wry 2 10, the torsional degree of freedom can be
removed. However, the noncirculatory portion of the aerodynamic loads could not be re-
moved as easily. For the purposes of making comparisons with Ref. 8. a second set of
equations of motion were derived for this study in which the noncirculatory lift and moment

were not included.
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8.1.1.1 Stability Boundaries in Hover

The data for the hover case is shown in Table 1 and was taken from Ref 8. The data
presented in this table have been non-dimensionalized using R, My and (1/Q) for length,
mass and time, respectively. The inflow equation used in Ref. 8 to calculate the hover

stability boundaries is given by

)= 20 [y By 8.1)
’r= — R
16 aoU (

TABLE 1
Non-dimensional data for the calculation of the coupled flap-lag stability boundaries in
hover
Flight Data
w =00
Rotor Data
¢, = 2b = 0.03927 wyy = 10
L, = 1.0 wgq = variable
e =00 w4 = variable
By =00 Cs =00
Hor = 00 Cg = 00
Rc =00 C =00
A = 025 ag =2
Xp = 0.5 Cqo = 0.01
I, = 0.3333333 Cno =00
Jp = 0.0002572 Ny = 4
Xp = 00 g = 0.05
Xp = 00 7 = 5.0
Fuselage Data
Xea = 00 Zea =00
Xpe = 0.0 Zee = 00

A comparison of the coupled flap-lag stability boundaries in hover generated using the
model developed in this study. together with the models employed in Refs. 8 and 50. is
presented in Fig. 13. The overall comparison of the results with both references is quite
good. Clearly the stability results of this study compare most favorably with the results of
Ref. 50, though there is some minor disagreement at the lower blade frequencies. As
mentioned previously, a direct comparison of the explicit expressions developed in this

study with those of Ref. 50 revealed a slight discrepancy in the higher order terms. Due
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to the sensitivity of stability results to higher order terrhs, it was concluded that this small
discrepancy was the primary cause of the minor disagreement between the two sets of

results.

8.1.1.2 Response Solutiqn in Forward Flight

The non-dimensional data for this model is presented in Table 2 and corresponds 1o the
»C” model used in Ref. 8, which represents a soft-in-plane hingeless rotor blade with uni-
form properties. The data have been non-dimensionalized using the dimensional param-

eters listed in the previous section.

TABLE 2

Non-dimensional data for the calculation of the coupled flap-lag response in forward flight

Fiight Data
u =04
Rotor Data
c, = 2b = 0.05498 wypy =-10
L, =10 wgy = 1125
e =00 w4 = 0732
Bp = 00 C, =00
Bpt =00 Cp = 0.0
Rc =10 C, =00
X, = 05 ag=2m
l, = 0.3333333 Gy = 0.01
Jp = 0.0002572 Cho = 00
Xip = 00 Ny, = 4
Xy =00 o = 007
y = 55
Helicopter Data
Cy = 0.005 fCy = 001A
Xpa = 00 Zea =00
Xee =00 Zee =00

The reverse flow model used in Refs. 8 and 50 differs from the model used in this study.
In the reverse flow model used in these two references, the sign of the drag and lift was
switched inside the reverse flow region. Therefore, when generating the results in this
section, the reverse flow model employed in Refs. 50 and 8 was adopted.

For the coupled flap-lag case the comparison of the flap and lead-lag response, at the

blade tip, is presented in Fig. 14. The response solutions given in Refs. 8 and 50 were
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obtained using the flap trim and quasi-linearization method; however, the response sol-
ution for the present study was obtained using the full trim harmonic balance technique
with three harmonics (i.e. Ny = 3). Though the flap-lag response solution of this study is
very similar to the solutions of Ref. 50 and 8, there is a marked difference. This can be
attributed to the difference in solution methods; since only the flap response was used to
obtain the trim solution in Refs. 50 and 8, it differs from the trim solution used in this study
in which the full coupled flap-lag response solution is solved in a coupled manner with
propulsive trim. Therefore the blade response solutions of Refs. 50 and 8, shown in Fig.
14, were calculated for a somewhat different trim state from that used in this study. This
observation was also made in Ref. 50 where it was discovered that the deviation in the trim
variables calculated using flap trim from those using a fully coupled trim/aeroelastic anal-
ysis could produce a significant difference in the respective equilibrium solutions.

Despite the fairly small disagreement between the coupled flap-lag blade response
solution obtained in this study and those generated in Refs. 50 and 8, which can most likely
be attributed to the difference in solution procedures, the comparisons were deemed close
enough to lend credence to the flap-lag portion of the mathematical model and solution

procedure.

8.1.2 Coupled Flap-Lag-Torsion Problem

in this section the complete coupled flap-lag-torsional equations of motion together with
solution procedure are verified by comparing the trim, response and stability results in
forward flight those obtained in Ref 50. The non-dimensional data for the blade config-
uration used in these comparisons is given in Table 3 and corresponds to a soft-in-plane
matched stifiness (i.e. Kg= K‘:) rotor blade with uniform properties. The data in Table 3
has been non-dimensionalized using R, M, and (1/Q) for length, mass and time, respec-
tively. The trim and response solutions of the blade in forward flight are compared first,

and next the lead-lag damping values in forward flight are also compared.

153



TABLE 3

Non-dimensional data used in calculating the coupled flap-lag-torsion results in forward

flight
Flight Data
u =03
Rotor Data
¢ = 2b = 0.03927 wry = 2550
L, =10 wgq = 1.15
e =00 w4 = 057
ﬁp =00 Cy = 00
Opt = 00 Cp = 0.0
Re = 0.0 C = 0.0
X, = 0.5 a, = 5.70
I, = 0.3333 Cqo = 0.01
Jp = 0.0001 Cmo = -0.02
Xp = 00 Np =
Xp =00 o = 0.05
y = 50
Helicopter Data
Cw = 0.005 fCqr = 0.01Ag
Xea = 00 Lea = 0.2
Xge = 00 Lee = 0.2

8.1.2.1 Trim Solution in Forward Flight

Though flap trim combined with the quasilinearization procedure was used to obtain
most of the trim and response results in Ref. 50, a small set of results were presented
which were obtained using the harmonic balance technique described in this study. The
trim and response results obtained in Ref. 50 by employing the harmonic balance tech-
nique are compared in this section to similar results calculated in the present study. The
results presented in this section were generated by retaining three harmonics (N, = 3) in
the expansion of the blade degrees of freedom.

The first comparison presented is between the trim variables obtained in this study with
those of Ref. 50, calculated at two different blade torsional frequencies. ‘Figure 15 presents
the comparison between the rotor plane angles of attack and inflow ratios. and Fig. 16
compares the collective and cyclic pitch inputs. It should be noted that these results were
generated without the reverse flow model. The comparison of the trim results is quite

good, though the trim solutions tend to diverge slightly at the higher advance ratios. The
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exact reason for this was not found, however the discrepancy between the trim solutions

is sufficiently small to conclude that overall the comparisons are very good.

8.1.2.2 Response Solution in Forward Flight

A comparison of the flap, lead-lag and torsional responses are presented in Fig. 17 for
an advance ratio of ¢ = 0.3 and rotating nondimensional torsional frequency of 5.0/rev. The
lead-lag and torsional responses obtained in this study are almost identical to those in Ref.
50. However, there is a small but noticeable difference between the flap responses. The
ftap response of this study has two even peaks, while the two peaks of Ref. 50 are slightly
uneven; the first peak being slightly smaller than the second. The cause of this slight dis-
crepancy is unclear, but may be related to the small discrepancy between the higher order
terms present in this study which were not present in Ref. 50, as noted earlier. However,
this minor variance between the two flap responses firmly supports the validity of the trim

and response solution procedure used in this study.

8.1.2.3 Stability in Forward Flight

Comparison of stability information is based upon the real part of the characteristic
exponent for the lag degree of freedom, which is the degree of freedom which has the po-
tential for becoming unstable in forward flight. Comparison of this information with that
obtained in Ref. 50 is presented in Fig. 18. The comparison with Ref. 50 is very good over
the entire range of advance ratios, thus lending credence to the validity of the coupled

flap-lag-torsional model and solution procedure employed in this study.

8.2 VALIDATION OF THE FULLY ELASTIC BLADE MODEL

Verification of fully elastic blade model developed in this study is based on comparison
with the results obtained in Refs. 38 and 45. In the study of coupled rotor/fuselage vibration
reduction in forward flight using higher harmonic control presented in Ref. 38, a fully flexi-

ble blade model and solution procedure was employed which is identical to the one used
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in this study. Though Ref. 38 incorporated a flexible fuselage in the mathematical model,
trim and response results were presented for the isolated blade case for validation of the
flexible blade model. However, since Ref. 38 does not present any stability results, com-
parisons with that reference could only be used to validate the trim and response portion
of the model used in this study.

Stability results in forward flight which can be used for model verification can be found
in Ref. 45. The fully elastic blade model utilized in Ref. 45 to study vibration reduction on
isolated rotor blades in forward flight using higher harmonic control, is based on the same
set of equations of motion used in this study. However, a Galerkin type finite-element
method combined with an implicit formulation was used in Ref. 45. Cubic interpolation
polynomials were used for the modeling of flap and lag bending, and a quadratic interpo-
lation polynomial was used for the modeling of torsion. Each finite-element therefore has
a total of 11 degrees of freedom: displacement and slope at each end of the element for
flap and lag bending: and rotation at each end of the element and also at a midelement
node for torsion. A normal mode coordinate transformation based upon one torsional, two
lag and three flap rotating coupled modes, was used to reduce the number of degrees of
freedom.

Furthermore, Ref. 45 employed an implicit unsteady aerodynamic formulation based
upon a finite-state, time-domain model for the unsteady aerodynamic effects. A simple
reverse flow model was used in which both the drag and the lift change sign inside the
reverse flow region. Fiap trim and quasilinearization were used to obtain the trim and
blade response. Since an implicit aerodynamic formulation is employed, the derivatives
of the aerodynamic loads required for the stability analysis were calculated using finite
differences.

While there are significant differences between the aeroelastic analysis used in Rel. 45
and the analysis presented in this study, it was reasonable to expect similar results from
the two approaches since they are based upon very similar equations of motion. Further-
more, Ref. 45 contains some results generated using full propulsive trim and quasisteady

aerodynamics; although the apparent mass terms were neglected in the calculations.
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Therefore comparison with selected results from Ref. 45 was deemed to piay a useful role
in validating the fully elastic blade model developed in this study.

The blade configuration used for model verification is presented in Table 4. The data
in that table have been non-dimensionalized using My , R and (1/Q) for mass, length and
time, respectively. The configuration represents a uniform soft-in-plane rotor blade model
with the center-of-gravity of the fuselage located a distance 0.5R below the hub and with

the fuselage drag center located a distance 0.25R below the hub.

TABLE 4

Soft-in-plane fully elastic blade configuration

Flight Data
@ = variable
Rotor Data
N, = 4
C, = 2b = 0.05498 L, =10
e =0 Bt =0
wg = 1123, 3.41, 765 a,=2n
w = 0.732, 4.485 Cyqo = 0.01
wry = 3.17 Cmo =00
y =585 o = 007
Helicopter Data
Cyw = 0.005 fCqr = 0.01A;
Xea = 00 Zep = 025
Xge = 0.0 Zec = 05

8.21 Trim Solution in Forward Flight

A comparison of the trim state of the rotor at different advance ratios with the results
obtained in Refs. 38 and 45 is presented in Figs. 19 and 20. Two sets of trim results which
were aobtained in Ref. 45 are presented. The first set of trim results was generated in Ref.
45 using flap trim, which represents a propulsive trim procedure in which the blade flexi-
bility is modeled with a linear flapping equation of motion for the first flap mode only. The
second set of trim results was obtained in Ref. 45 using a propulsive trim procedure in
which all blade degrees of freedom are included: however only the constant and first har-

monics of the blade response are used to calculate the trim variables. For both sets of trim
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results from Ref. 45, a simplified version of the aeroelastic model is used, in which only four
rotating coupled modes are used to represent the flexibility of the blade and the mode
shapes are calculated using only two finite elements. In addition, quasisteady aerodyna-
mics (without apparent mass terms} was used and constant inflow was assumed.

The trim results from Ref. 38 compare very favorably with the resulits of this study. This
is to be expected since the blade models and solution procedures are essentially identical.
However, the two sets of results from Ref. 45 do not compare as favorably. Of the two sets,
the set of results obtained using flap trim compare more favorably, especially in the rotor
angle of attack and the sine cyclic pitch input. One would expect that the propulsive trim
results would compare better than the flap trim results, however recall that only the con-
stant and first harmonics of the blade response were retained in the calculation of the trim
state by Ref 45, while the constant part and the first five harmonics (Ny = 5) are retained
in this study. The full trim procedure used by Ref. 45 represents an improvement over the
flap trim procedure, though it is not as complete as the one used in this study. Reference
45 also employed a different reverse flow model from that used in this study, which can
also significantly influence the trim results. Recall that in Ref. 45 the sign on both the drag
and the lift was switched inside the reverse flow region, while in this study the lift was set

to zero.

8.2.2 Response Solution in Forward Flight

A comparison of tip response results for an advance ratio of 4 = 0.3 is presented in
Fig. 21. The tip response has been non-dimensionalized with respect to the radius of the
blade. Since the flap trim results of Ref. 45 compared better than the full trim results to the
results of this study, the tip response plotted in Fig. 21 represents the response obtained
using flap trim. The blade response in Ref. 45 was obtained using quasilinearization. |t
should be emphasized that the results in Ref. 45 were calculated using unsteady aero-

dynamics.
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Once again very good agreement with Ref. 38 is obtained. However there is a signif-
icant discrepancy between the results obtained in this study and the response found in Ref.
45. While the response in Ref. 45 was obtained for a slightly different trim state, the dis-
crepancy in the blade response can be primarily attributed to the difference in the reverse
flow models. The sign on the lift is switched inside the reverse flow region in Ref. 45, in-
stead of being set equal to zero as done in this study. This produces a greater imbalance
in the aerodynamic loads acting on the advancing and the retreating side of the rotor disk,
which in turn results in a much lower flap response in Ref. 45. Comparison of the flap re-
sponses presented in Fig. 21 reveals that on the advancing side of the rotor disk the flap
responses are very similar, however the responses diverge on the retreating side, the re-
sponse in Ref. 45 exhibits much smaller flap angles. Thus variations in the amplitude of

the flap response in Ref. 45 are considerably greater than those observed in this study.

8.2.3 Stability Results in Forward Flight

A comparison of the stability results calculated in the present study is compared with
those obtained in Ref. 45. Results are obtained using both the soft-in-plane blade (
w4 =0732/rev) presented in Table 4 and the stifl-in-plane blade configuration (
w4y = 1.42/rev) presented in Table 5.

The stability results in Ref. 45 were obtained assuming quasisteady aerodynamics
{without apparent mass terms) using flap trim combined with a quasilinearization proce-
dure to obtain the time dependent equilibrium position. Finite differences were used to
obtain the stability derivatives of the aerodynamic loads. Floquet theory was used to obtain
the characteristic exponents of the linearized system from the value of the state transition
matrix at the end of one period; which in turn was obtained in a single-pass using DE/STEP.

A comparison of the real part of the characteristic exponents associated with each
mode is plotted versus advance ratio in Figs. 23 through 24 for the soft-in-plane blade case.
Overall the comparisons are favorable, though there are small differences for each of the

modes. Since it is the lag degree-of-freedom which is the critical degree-of-freedom for
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TABLE 5

Stiff-in-plane fully elastic blade configuration

Flight Data
@ = variable
Rotor Data
N, = 4
€, = 2b = 0.05498 L, =10
e=20 Ot =
wg = 1.123, 3.41, 765 a,=2n
w, = 142, 8.75 Cyo = 0.01
wtq = 317 Cho =00
y =55 a = 007
Helicopter Data
Cw = 0.005 fCqs = 0.01AR
Xea = 00 Zep = 0.25
Xge = 00 Zec = 05

stability, the real part of the characteristic exponent of the first and second lag modes are
plotted separately from the other modes in Fig. 22. The real part of the characteristic ex-
ponent is a measure of the damping of that mode. It is evident from Figs. 22 and 23 that
the damping in lag is the lowest and therefore it is the lag mode which can potentially be-
come unstable first. The comparison of the real part of the characteristic exponents for the
first two lag modes with Ref. 45 is favorable, though there is a small discrepancy between
the first lag mode results at the higher advance ratios, and between the second lag mode
results at the lower advance ratios. There are three probable sources for these discrep-
ancies: 1) the difference in the reverse flow models; 2) the difference in the trim proce-
dures; and 3) the fact that in Ref. 45 the apparent mass terms are neglected in the
quasisteady aerodynamics. The apparent mass terms introduce various higher order
terms; and thus they may have an effect on blade stability, which is sensitive to higher or-
der terms. These apparent mass terms become more important as the advance ratio in-
creases. and thus may partially explain the discrepancy between the first lag mode results
evident at the higher advance ratios. Another factor which could explain the difference in
the first lag mode results is the difference in the reverse flow models. It should be noted

that this difference increases at the higher advance ratios. However, this cannot explain
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the difference displayed in the second lag mode stability results at low advance ratios.
One possible explanation for this discrepancy is related to the use of finite differences to
obtain the stability derivatives of the aerodynamic loads in Ref. 45. Since the real part of
the characteristic exponent of the second lag mode is very small, its value can be very
sensitive to the accuracy of the finite difference approximation for this stability derivative.

A comparison of the real part of the characteristic exponents for the first two flap modes
is presented in Fig. 23, and similar information is presented for the third flap mode and the
fundamental torsional mode in Fig. 24. The results compare well with those obtained in
Ref. 45, but there are some small differences. Again these minor differences can be attri-
buted to the difference in trim procedures, reverse flow models, and, to a lesser extent,
on the absence of apparent mass terms in the expressions for the aerodynamic loads used
by Ref. 45.

A comparison of the real part of the characteristic exponents calculated in this study
with the results obtained in Ref. 45 for the stiff-in-plane blade case (w4 = 1.42/rev) is
presented in Figs. 25 through 27. Comparison of the real part of the characteristic expo-
nents for the first two lag modes are presented in Fig. 25, for the first two flap modes in Fig.
26, and for the third flap and first torsion modes in Fig. 27. Overall the comparisons are
favorable, except that Ref. 45 predicts an instability in the fundamental lag mode for ad-
vance ratios greater than 0.4 which was not observed in the model of this study. The rea-
son Ref. 45 obtained this instability is not known. It should be noted, however, that
comparisons which were made recently[16] with an independent researcher employing a
similar blade model and solution procedure, verified the stiff-in-plane results obtained in

the present study.
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8.2.4 Vibratory Response in Forward Flight.

Results for the 4/rev vibratory hub shears and hub moments in forward flight were
presented in Ref 45. It is useful to also compare vibratory loads between various studies
before embarking on research aimed at reducing these vibratory loads.

The 4/rev vibratory hub shears and moments calculated in Ref. 45, for the case of
quasisteady aerodynamics, were obtained using flap trim and quasilinearization, instead
of the full trim harmonic balance procedure used in the present study. Furthermore, the
integration around the azimuth, required in the harmonic analysis of the vibratory hub
loads, was performed in Ref. 45 using a trapezoidal integration scheme, in contrast to
30-point Gaussian quadrature used in this study. It was not stated in Ref. 45 how many
points around the azimuth were used in the integration scheme.

A comparison of the magnitudes of the 4/rev vibratory hub shear and moment compo-
nents calculated in this study with resuits obtained from Ref. 45 are plotted in Figs. 28
through 30 for the soft-in-plane blade case. It should be noted that the results presented
in Ref. 45 represented peak-to-peak values and were scaled by dividing by the non-
dimensional flapping inertia |, which is equal to 1/3 for an uniform blade. Therefore in or-
der to compare them with the results in this study the values from Ref. 45 were divided by
two and multiplied by 1,

For each component, the amplitude of the hub shears obtained in this study are smaller
than those obtained in Ref. 45, especially the vertical component, and the amplitudes of the
hub moments are slightly larger. The difference in the amplitudes can be attributed to the
difference in the reverse flow models and the trim procedures. Recall from the comparison
of the blade tip response in forward flight presented earlier, the flap response obtained in
Ref. 45 was greater due to the different reverse flow model and trim solution used by that
reference. It should be noted that as the advance ratio increases, the effects of the differ-
ence in the reverse flow model becomes more important.

Comparisons of the 4/rev hub shear and moment amplitudes with Ref. 45 for the case

of the stiff-in-plane blade are presented in Figs. 31 through 33. Examination of these figures
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shows that the correlation of hub loads with Ref. 45 is better in the case of the stiff-in-plane
blade.

Overall, the comparisons with both Ref. 38 and 45 are considered to be quite reason-
able, thus lending credence to both the blade model and solution procedure used in this
study. Even though there exist some important differences between the aeroelastic anal-
ysis of Ref. 45 and the one used in this study, the comparisons presented here are con-

sidered to more than adequately justify the validity of the present aeroelastic analysis.
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Chapter IX

CONTROL STUDIES USING THE OFFSET-HINGED SPRING RESTRAINED BLADE MODEL

In this chapter, the global and local deterministic controllers, implemented through an
individually controlled aerodynamic surface on each blade are employed to achieve si-
multaneous reduction of the vibratory hub shears and hub moments in forward flight. To
demonsirate the effectiveness of this control approach in reducing vibrations, the degree
of vibration reduction achieved is compared with conventional IBC, in which the entire
blade is oscillated. Comparisons of the control input amplitudes and power required to
implement control for the two control approaches, are also made. Furthermore, these
comparisons are studied for a reasonably wide range of blade fundamental rotating
torsional frequencies, to assess the influence of biade torsional flexibility on the vibration

reduction potential of this new approach.

91 SIMULTANEOUS REDUCTION OF THE VIBRATORY HUB SHEARS AND MOMENTS
For the results presented in this chapter, only the vibration magnitudes were penalized

in the quadratic cost functional
— -
J = Z/[W;]Z (9.1)

For this case the quadratic cost functional J consists of the weighted sum of the squares

of the amplitudes of the hub shears and moments
—y = -7 =

and consequently represents a measure of the vibration levels experienced during the ith
step. All six components of the vibratory hub loads are considered to be of equal impor-
tance in terms of reduction. However, due to the non-dimensionatization scheme used in

this study, the relative magnitude of the amplitudes of the baseline vibratory hub moments
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are an order of magnitude smaller than the amplitudes of the baseline vibratory hub
shears. Therefore, in this trend type of study, to ensure that an equivalent level of vibration
reduction is achieved in both the hub shears and hub moments, the weighting W, on the
squares of the hub moment amplitudes was scaled up by a factor of 10 relative to the
weighting W on the squares of the hub shear amplitudes.

The global controller for the case when only the vibrations are penalized is obtained

by substituting [W,]=[W,]=[0] into Eq. (7.4) to yield
U = - [Do]—1[T0]T[W2]EO (9.2)
where
[Do] = [Tol"[W,1[To] (9.3)

It is evident from Eq. (9.2) that in this case the global controller converges in a single step.
However, the control input given by Eq. (9.2) represents the true “optimal” input only if the
system is truly linear. Since the assumption of moderate deflections made in the problem
formulation introduces geometric nonlinearities into the problem, the system is nonlinear
and therefore the local controiler. which is based on a linearization of the problem about
the current control, must be used in order to obtain the true “optimal” control input.

The local controller for this case is obtained by substituting [W,] = [W,] = [0] into Eq.

(7.9) to yield

%

U= = [0 1 [T, 1 W12, + O (9.4)
where
[D_4] = [T_1 1 [W, 1T, 4] (9.5)

Equation (9.4) is in the form of a closed-loop controller where feedback of the measured
vibration levels is used to determine the control input during each control step. Thus the
local controller represents an iterative scheme and should converge to the true “optimal”

control input for the nonlinear system represented by the helicopter.
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The blade data employed in the vibration reduction studies presented in this chapter is
given in Table 6. Except for the parameters Cy , 7 and g, the data in the table has been
non-dimensionalized using the dimensional parameters R, M, and (1/Q)) for length, mass
and time, respectively. Furthermore, all results presented in this chapter are non-
dimensionalized using these characteristic parameters. The data in Table 6 corresponds
to a soft-in-plane uniform blade configuration which is used in the active control studies
involving conventional IBC. The data employed in the studies of control implemented
through an actively controlled fiap on each blade is the same as presented in Table 6 ex-
cept that each blade incorporates a 20% span, 1/4 chord partial span trailing edge flap
centered about the 75% span blade station. In addition, to account for the 5% higher ef-
fective solidity due to the presence of a trailing edge flap on each blade, the weight coef-
ficient Cyy is increased by 5%. This ensures that the two blade configurations have roughly

equivalent blade loading, as represented by Cyfo .

TABLE 6

Spring restrained biade data

Flight Data
u =03
Rotor Data
cp, = 2b = 0.03927 25<wy <50
L, = 10 wp = 1.15
e =00 w, = 057
[)‘p =00 C¢ =00
9pt = 00 CB =00
Rc = 00 Cg = 0.0
Xip = 00 a, = 5.70
Xa =00 Cq = 0.01
Xp = 0.5 Cpo = -0.02
l, = 0.3333 N, = 4
Jp = 0.0001 y = 50
X, =00 ¢ = 005
Helicopter Data
C, = 0005 fCy = 0.01Ag
Xea = 00 Zep =02

The uncontrolled {baseline) value of the quadratic cost functional obtained using the

blade configuration incorporating a trailing edge flap is compared in Fig. 34 to the value
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obtained using the conventional blade configuration. The reason for the small difference
in the uncontrolled vibration levels evident in the figure is due to the minor difference in
the blade configurations. However, since the controlled vibration levels achieved by im-
plementing the two control approaches are a small fraction of their uncontrolled values,
this difference is considered to be unimportant.

Examination of Fig. 34 reveals that the highest uncontrolled vibration levels are ob-
tained for the case of the torsionally soft blade with wy; = 2.5/rev. As the torsional fre-
quency of the blade is increased above 2.5/rev, the vibration levels decrease sharply until
they reach a fairly constant level around wyy = 4/rev. This sensitivity of the vibration
levels to changes in the torsional stiffness of the blade can be attributed to the sensitivity
of the aerodynamic loads to changes in the angle of attack of the blade. As the blade be-
comes stiffer in torsion, the blade torsional response decreases in magnitude, resulting in
lower vibratory loads. in this case.

The control studies presented in this chapter were based upon a control input signal
consisting of a combination of a 2, 3, 4 and 5/rev harmonic input signal (i.e. N, = 5). The
3, 4, and S/rev input frequencies were selected since a 4/rev input signal introduced in the
nonrotating system through a conventional swashplate, which is frequently used in HHC
studies on four bladed rotors, generates a signal with 3, 4 and 5/rev components in the
rotating reference frame. The 2/rev input frequency was added to this set since it was
found to be approximately as effective as the other frequencies in achieving vibration
reduction[39]. Input harmonics greater than 5/rev were rejected since it was found that
these higher input harmonics adversely affected the 8/rev vibration levels. the next great-
est vibration component after the 4/rev vibrations in a four-bladed rotor.

The (2. 3, 4, 5/rev) frequency combination was selected after comparing the effective-
ness of various input frequency combinations in reducing the 4/rev vibration levels, as well
as their impact on the 8/rev vibrations. This set of input frequencies was found to produce
the greatest level of reduction in the 4/rev vibrations without unacceptable increases in the
8/rev vibration levels. This is demonstrated in Figs. 35 through 38, which depict the level

of vibration reduction achieved in the 4/rev hub shears and moments using various input
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frequency combinations, and the resulting impact on the 8/rev hub loads. The results in
the figures were obtained by employing the global control using the input frequency com-
binations (3, 4, 5/rev), (2, 3, 4, 5/rev), and (2, 3, 4, 5, 6/rev) on a blade with a fundamental
rotating torsional frequency of wyq = 3.0/rev . Figures 35 and 36 demonstrate the effec-
tiveness of these three input frequency combinations in reducing the 4/rev hub loads, and
the resulting impact on the 8/rev vibrations, when control is implemented through the ac-
tively controlled flap. Figures 37 and 38 represent comparisons obtained using conven-
tional IBC. These two sets of figures clearly demonstrate that the addition of the 2/rev input
frequency to the (3. 4, 5/rev) frequency combination results in a significant improvement in
the effectiveness of both control approaches. However, when the 6/rev input frequency is
included, the small additional decrease obtained in the 4/rev vibrations is more than can-
celled out by the significant increase observed in the 8/rev vibration levels.

The global and local controllers were employed to reduce simultaneously the 4/rev hub
shears and hub moments. Control was implemented through the actively controlled flap,
and also using conventional IBC, primarily for comparison purposes. In the present case,
where only the vibration magnitudes were penalized, the global controller always con-
verged in a single step. However the local controller, which is based on a linearization
about the current control, required a number of iterations to converge. Typical iteration
histories of the local controller are presented in Figs. 39 through 42 for both control ap-
proaches. The results were obtained using a blade with a torsional frequency of
wrq = 3frev. These figures show that the controlled cost functional, plotted in Fig. 39, and
the controlled hub shears and moments, plotted in Figs. 40 through 41, converge to steady
values by the fourth iteration. Convergence was assumed to have occurred when the
change in the cost functional from the previous step was less than 1%. It was found that
the local controller always converged within three to four iterations over the entire range
of blade torsional frequencies considered.

A comparison of the controlled values of the quadratic cost functional obtained when
employing the global and local controllers is presented in Fig. 43 for both control ap-

proaches. In each case the converged value of the controlled cos! functional is plotted as
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a percentage of the baseline value. It is evident from the figure that very substantial vi-
bration reduction was achieved by both conventional IBC and the actively controlled flap
over the entire range of blade torsional frequencies considered. The local controller per-
formed better than the global controller in each case. In the case of conventional IBC, the
local controller successfully reduced the cost functional by at least 99.75% over the entire
range of blade torsional frequencies considered, compared to a reduction by only about
97.5% achieved by employing the global controller. For the case when the control was
implemented through an actively controlled flap, the local controller was able to increase
the degree of vibration reduction from 98.25%, achieved by the global controller, to at least
99% over the entire range of torsional frequencies.

In the case considered here, where only the vibration magnitudes are penalized, the
global controller simply represents the first control step of the local controller. However,
the problem is inherently nonlinear due to the assumption of moderate deflections, and
thus the introduction of feedback will of course increase the degree of vibration reduction
which can be achieved. It is interesting to note from Fig. 43 that as the blade becomes
relatively stiff in torsicn very little improvement in the vibration reduction effectiveness is
achieved in either control approach when the local controller is employed. This can be
attributed to the fact that the nonlinearity inherent in the system is due to the sensitivity
of the blade vibratory response to control. As the torsional stiffness of the blade is in-
creased, this sensitivity diminishes, reducing the strength of the nonlinearity inherent in the
system. Therefore. as long as the system parameters {i.e., the elements of the [ T] matrix)
are known without error, little improvement in vibration reduction is to be expected from
the introduction of feedback in the case of torsionally stiff blades.

In order to examine the degree of reduction achieved in each of the vibratory hub load
components, the vertical hub vertical hub shear component is selected as a representative
indicator of all six vibratory hub load components. A plot of the baseline value of the 4/rev
vertical hub shear versus blade torsional frequency is presented in Fig. 44 for the two blade
configurations. The figure reveals that the presence of a trailing edge flap on the blade

has a very small effect on this vibratory component, as seen from the present results.
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Comparison of the controlled value of the 4/rev vertical hub shear obtained by em-
ploying the global and local controllers is presented in Fig. 45 for both control approaches.
The figure reveals that very substantial reduction in the amplitude of the 4/rev vertical hub
shear was achieved by both conventional IBC and the actively controlled flap. In both
cases the best reduction was obtained by employing the local controller. Using the local
controller, the vertical hub shear was reduced by at least 97.5% by conventional IBC and
by at least 95% using the actively controlied flap over the entire range of blade torsional
frequencies considered. Very similar results were obtained for the other five components
of the vibratory hub loads. Overall, it appears that conventional IBC is slightly more ef-
fective in reducing the vibratory hub loads; however, the difference in the degree of vi-
bration reduction achieved by the two control approaches is small.

Comparisons of the baseline and controlled values of the 4/rev hub shears and mo-
ments achieved using the actively controlled flap and conventional IBC are presented in
Figs. 46 through 49. The behavior of both a blade relatively soft in torsion, with wq =
2.5/rev. and for a blade relatively stiff in torsion, with wy, = 5/rev, are compared. The
degree of reduction achieved in the 4/rev hub shears and moments using the actively
controlled flap and using conventional IBC is presented in Figs. 46 and 48, respectively, for
the case of the torsionally soft blade, and in Figs. 47 and 48, respectively, for the case of
the torsionally stiff blade. The two sets of figures show that very substantial reduction in
the 4/rev hub shear and moment components was achieved by both control approaches.
In each case the local controller achieved a greater degree of vibration reduction in each

of the vibratory hub load components.

9.1.1 Control Power Requirements

A comparison of the average power required (per revolution) for the implementation
of the vibration reduction using the two control approaches is presented in Fig. 50. The
power required for conventional IBC is defined as the average power needed to drive the

blade root pitch actuators during one revolution:
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Ny =4

2% i
P = ) 2} [~ Mulbi)cti )1 o, (96)

where f,g(if, ) represents the instantaneous additional IBC pitch input of the k-th blade and
Mgx3(¥ i) represents the instantaneous blade root feathering moment.

Examination of Fig. 50 reveals that substantially more power is required to implement
vibration reduction using the conventional IBC approach than for vibration reduction based
on the actively controlled flap. Vibration reduction using conventional IBC required about
12 times more power at the lower blade torsional frequencies, and about 7 times more
power at the higher blade torsional frequencies. These higher power requirements appear
to be associated with the need to drive harmonically the fairly large and coupled elastic
system represented by the entire blade, as opposed to being required to drive harmon-
ically a relatively small aerodynamic surface. It is also evident from this figure that as the
torsional frequency the blade increases, the power required to implement the control in-

creases for both control approaches.

9.1.2 Control Input Requirements

A comparison of the maximum amplitudes of the optimal control input required for vi-
bration reduction by the two control approaches is presented in Fig. 51. Of course larger
control input amplitudes are required for vibration reduction when using the actively con-
trolled flap, but these angles are quite reasonable: over the entire range of blade torsional
frequencies investigated, the largest control flap deflection angle required is only 8 de-
grees. Itis evident from Fig. 51 that in both control approaches, the required control input
amplitudes increase with increasing blade torsional stiffness. As the blade becomes stiffer
in torsion, the sensitivity of the system to control diminishes, thus requiring larger control
input amplitudes to achieve roughly the same degree of vibration reduction. This important
influence of the blade fundamental torsional frequency on vibration reduction is also con-

sistent with the findings presented in Ref. 28.
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9.2 EFFECT OF MASS UNBALANCE

The results presented so far have been generated using a mass balanced flap, i.e. the
offset X,. between the hinge point and the center of gravity of the control flap is zero. When
this is true the inertial moment about the control flap hinge is due only to the polar moment
of inertia of the control flap, denoted as J.. Moving the center of gravity of the control flap
aft of the hinge point increases the rotational inertia and thus can have a significant impact
on the hinge moment and the amount of power required to drive the control flap. The effect
of using a mass unbalanced flap is investigated in this section by moving the contro! flap
center of gravity aft of the hinge point by one quarter of the control flap chord length, i.e.
Xic = (1/4)ccs.

A comparison of the uncontrolled vibration levels obtained using a mass balanced and
an unbalanced control flap is presented in Fig. 52. The figure shows that aimost no change
is observed in the uncontrolied vibration levels when a mass unbalanced trailing edge flap
is used. Furthermore, it is evident from Fig. 53 that the impact on the controlled vibration
levels is also very small. Finally, examination of the required control input amplitudes
presented in Fig. 54 shows that the use of a mass unbalanced trailing edge flap has no
effect on the input amplitudes either. Thus, shifting the mass center of the control flap aft
of the hinge point has virtuaily no effect on the vibration levels or on its potential to reduce
them.

However, a comparison of the control power requirements of the mass balanced and
unbalanced control flap presented in Fig. 55 reveals that a substantial reduction in power
requirements can be obtained by using an unbalanced flap. The figure depicts a 50% (at
the higher btade torsional frequencies) to 80% (at the lower blade torsional frequencies)
reduction in power requirements for the unbalanced flap. Thus the flapping and twisting
motions of the blade, which provide inertial moments about the control surface hinge when
X, > 0. help drive the control flap which reduces the load on the control flap servo-

actuator.
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Chapter X

CONTROL STUDIES USING THE FULLY ELASTIC BLADE MODEL

The results obtained using the flexible blade model are presented in this chapter. The
nominal data for the elastic blade configuration employed in this study is presented in Ta-
ble 7 and corresponds to a soft-in-plane blade with uniform mass and stiffness. The data
resembles approximately an MBB-105 helicopter. The data in the table (exept for Cy, y
and ¢ ) have been nondimensionalized using My, L, and (1/Q) for mass, length, and time

respectively.

TABLE 7
Elastic blade configuration used in control studies

Dimensional Data

R = 491m
Q = 425RPM
M, = 52kg
Nondimensional Data

Flight Data
u =03

Rotor Data
N, = 4 L, =10
7y = 55 g = 007
¢, = 2b = 0.05498 e=0
X, = 00 Xip = 00
lyge = 0.0000 0pt =00
gz = 0.0004 a,=2n
wp = 1.123. 3.41, 7.62 Cyo = 0.01
w, = 0732 446 Cmo = 0.0
25<wy <50

Helicopter Data
Cw = 0.005 fCyr = 0.01Ag
Xee = 00 Zee = 03

The blade data in Table 7 corresponds to a conventional blade configuration (i.e., no
trailing edge flap) that is utilized in the control studies involving conventional IBC. In the

studies of control implemented through an actively controlled flap, the same blade data is
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used, except that each blade incorporates a partial span trailing edge flap which is 12%
of the blade span, 1/4 of the blade chord, and centered about the 75% blade span position.
The addition of the trailing edge flap to the blade span alters the mass distribution of the
blade, which changes the natural frequencies of vibration. In this study, the bending and
torsional stiffnesses of the flexible blade incorporating the control flap were increased
(slightly) to compensate for the additional mass, such that the resulting fundamental fre-
guencies match those of the conventional blade configuration presented in Table 7. This
was done to similate the BO-105 blade, as it exists. However, to account for the 3% higher
effective rotor solidity due to the presence of a trailing edge flap on each blade, the value
of the weight coefficient Cy, used in the control studies involving the control flap is 3%
larger than the value shown in Table 7. This ensures that the two blade configurations
have roughly equivalent blade loading, as represented by Cy/o .

The local controller represented by Eq. (7.9) was employed to produce simultaneous
reduction in the vibratory hub shears and moments using the actively controlled flap.
Conventional IBC was also implemented for comparison purposes. In both control ap-
proaches an input signal consisting of 2, 3, 4, and 5/rev harmonic components in the ro-
tating reference frame was utilized. This combination of frequencies was found to produce
the greatest degree of reduction in the 4/rev hub loads without causing a significant in-
crease in the 8/rev hub loads, which are the next largest component of the vibratory loads
in a four-bladed rotor.

In the active control studies presented in this chapter only the vibration levels are pe-
nalized (i.e., [W,]=[W,] = [0]). In this case the quadratic cost functional J consists of
the weighted sum of the squares of the amplitudes of the hub shears and hub moments,
and thus represents a measure of the vibration levels experienced during the i-th control
step. The weightings on the squares of the hub moment amplitudes were scaled by a
factor of ten relative to the weightings on the squares of the hub shear amplitudes. This
was found to be necessary in order to achieve roughly the same degree of reduction in the

vibratory hub shear and hub moment components.
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A comparison of the uncontrolled (baseline) values of the quadratic cost functional for
a conventional blade and a blade incorporating a trailing edge flap is presented in Fig. 56.
The comparison is conducted over a range of blade fundamental rotating torsional fre-
quencies, starting from a blade which is relatively soft in torsion, wrq = 2.5/rev, to a blade
which is relatively stiff in torsion wrq=50/rev . Figure 56 reveals that the addition of a
relatively small trailing edge flap to the outboard sections of the blade span results in a
25-40% decrease in the baseline value of the cost functional, representing a 13-23% re-
duction in the 4/rev hub load magnitudes. It should be noted that the offset between the
center of gravity of the blade cross-section and the elastic axis is zero for this case. The
presence of a trailing edge flap on the blade shifts the center of gravity behind the elastic
axis. which has the effect of increasing the inertial coupling between the flapping and
twisting motions of the blade. This coupling appears to have a beneficial effect on the vi-
bration levels in this case. Thus in effect, the mass of the trailing edge flap may be acting
like a tuning mass, which is sometimes used to tailor the blade vibratory response.

The minimum value of the quadratic cost functional achieved by employing the local
controller implemented through the actively controlled flap is presented in Fig. 57. The
results obtained using conventional IBC are presented for comparison. The figure shows
that very substantial vibration reduction was achieved by both control approaches over the
entire range of torsional frequencies considered, and that the level of reduction produced
by the actively controlled flap is comparable to conventional IBC. In fact, for blades with
a torsional frequency in range 3.1 <wy, < 3.7 , the level of vibration reduction produced
by oscillating the relatively small trailing edge flap exceeds that achieved by oscillating the
entire blade. This occurs when the torsional frequency of the blade w74 Is close to the
rotating frequency of the second flap bending mode, which is given by wgy = 3.7[rev when
x. = 0.75R.

A very important capability lacking in conventional IBC. where the entire blade under-
goes a uniform pitch change about the blade root. is the ability to cyclically vary the twist
distribution of the blade. It was shown by Lemnios and Smith{28] in their study of a con-

trollable twist rotor (CTR) configuration that improvements in rotor performance, and sig-
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nificant decreases in blade bending amplitudes, could be achieved by cyclically varying the
twist distribution of the blade. In their study, a servo-flap similar to the one used in this
study to produce the external torsional moments needed to alter the twist distribution of the
blade. Thus the ability of the actively controlled flap to affect the blade’s twist may help
explain its superior performance compared to conventional IBC for blades with a torsional
frequency near the frequency of the second flap bending mode. The increase in coupling
between these two modes should increase the potential of the actively controlled flap to
affect the vibratory response of the blade, and hence the vibration levels.

Examination of Fig. 57 shows that the effectiveness of conventional IBC is relatively in-
sensitive to variations in the torsional stiffness of the blade, while the figure depicts a de-
crease in control flap effectiveness at the higher blade torsional frequencies. As the blade
becomes stiffer in torsion, the ability of the control flap to affect the twist distribution of the
blade is reduced, thus reducing its effectiveness in controlling vibrations. Practically,
though, the optimal cost functional at the higher torsional frequencies is still very small.

The degree of reduction achieved in each of the 4/rev hub load components by the two
control approaches is shown in Figs. 58 through 63 by comparing the reduced hub shear
and moment amplitudes with their baseline values. Comparisons are presented for the
torsional frequencies wyq, = 2.5, 3.0. 3.5, 40, 4.5 and 5.0/rev. Examination of these figures
reveals that the actively controlied flap successfully reduced the hub shears the hub shear
components by at least 80% over the entire range of torsional frequencies, and reduced
the hub moment components by at teast 50%. The best performance of the actively con-
trolled flap, obtained at wr, = 3.5/rev, consisted of a 98% reduction in the hub shear com-
ponents, and a 92% reduction in the hub moment components. The effectiveness of
conventional IBC was fairly constant over the entire range of torsional frequencies con-
sidered, reducing the hub shears by at least 97%, and the hub moments by at least 87%.

A comparison of the maximum control input amplitudes required for vibration reduction
by the two control approaches is presented in Fig. 64. Of course the input angles required
by the actively controlled flap were much larger than the IBC pitch angles, but these de-

flection angles were quite reasonable: over the entire range of blade torsional frequencies
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investigated, the largest control flap deflection angle required was only ten degrees. An
increase in control amplitudes with increasing torsional stiffness is evident for both control
approaches; however the greatest increase is in the required control flap deflection angles.
This can be atiributed to the fact that as the blade becomes stiffer in torsion, much larger
input angles are required to affect changes in the twist distribution of the blade.

Finally, a comparison of the power required to implement control through the actively
controlled flap and conventional IBC is presented in Fig. 65. The power required 1o drive
the control surface actuators is defined by Eq. (7.17) and the power required to implement
conventional IBC is defined by Eqg. (9.6). Figure 65 reveals that oscillating the entire blade
requires considerably more power than oscillating the relatively small trailing edge flap;
conventional IBC requires anywhere from 3 times (on a torsionally stiff blade) to 10 times
(on a torsionally soft blade) the power for its implementation. The power requirements of
both control approaches increase as the blade becomes stiffer in torsion, as shown in Fig.
65 As the blade becomes stiffer in torsion, it becomes more difficult, and hence more

costly, to alter the vibratory response of the blade.

10.1 COMPARISONS WITH THE SPRING RESTRAINED BLADE MODEL

In this section results generated using the fully elastic blade model are compared with
results obtained using the simple offset-hinged spring restrained blade model to determine
the effect of the refined blade model on the dynamic behavior of the blade. The elastic
blade data presented in Table 7 is employed to obtain the results using the simple spring
restrained blade model. To provide valid comparisons between the two blade models, the
stiffnesses of the torsional root springs are set such that the resulting rotating frequencies
in flap, lead-lag and torsion match the fundamental rotating frequencies of the flexible
blade. There is no unique combination of the root offset and spring stiffnesses which yields
the appropriate fundamental rotating frequencies. Thus, to oblain a unique set of spring
stifinesses, the root offset in the spring restrained blade model is set to zero, which is the

value of e used in the flexible blade model.
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10.1.1 Trim and Response Solution in Forward Flight

The trim state of the rotor obtained using the two blade models is plotted versus ad-
vance ratio in Figs. 66 and 67 for a blade with a torsional frequency of wyq = 3.17/rev. The
inflow ratio and rotor angle of attack are plotled in Fig. 66 and the trim pitch settings are
depicted in Fig. 67. Examination of these two figures reveals that the use of a more realistic
dynamic model, as represented by the fully elastic blade model, has very little impact on
the trim results. Except for the collective pitch angle, which is slightly larger in the case
of the flexible blade model, the trim results are aimost identical. However, a comparison
of the blade tip response resulis presented in Fig. 68, reveals a considerable difference in
response solutions. Though the character of the response solutions are very similar be-
tween the two blade models, as seen in Fig. 68, the tip deflection amplitudes obtained using
the flexibie blade model are larger. The greatest difference is evident in the twist de-
flection of the blade, which may explain the slightly higher collective pitch settings required
by the flexible blade model seen in Fig. 67. A higher pitch setting would be required to

offset the larger negative elastic twist of the flexible blade model.

10.1.2 Vibratory Hub Loads

The importance of the modeling of the blade flexibility when calculating vibration levels
was investigated by comparing the amplitudes of the 4/rev hub shears and moments ob-
tained using the simple offset-hinged spring restrained blade model with those obtained
using the more realistic flexible blade model. The vibration magnitudes, calculated for a
blade with a torsional frequency of wyq = 3.17/rev, are plotted at different advance ratios
in Figs. 69 through 71. The results demonstrate that the improvement in the dynamic
modeling capability afforded by the fully elastic blade model results in a dramatic increase
in the calculated values of the vibratory hub loads. Except in the case of the vertical hub
shear component, which is aimost identical for the two blade models, the amplitudes of the
4/rev hub loads obtained using the fully elastic blade model are much greater than those

predicted by the spring restrained blade model: the longitudinal and lateral hub shear
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amplitudes are about 100% larger, and the hub moment amplitudes are more than 200%
larger. This dramatic increase in the vibratory hub loads can be attributed at least in part
to the larger response amplitudes obtained using the flexible blade model, depicted in Fig.
68. The greatest difference is evident in the torsional deflection of the blade, which can

have a substantial impact on the vibratory aerodynamic loads.

10.1.3  Active Control Studies

The uncontrolled (baseline) values of the quadratic cost functional obtained using the
two blade models are compared in Fig. 72. The figure depicts significantly higher vibration
tevels for the flexible blade model. This can be attributed to the fact that the 4/rev hub
loads obtained using the flexible blade model are much larger than those predicted by the
simple spring restrained blade model, as shown in Figs. 69 through 71. Recall that the
greatest difference was evident in the hub moment components, which have been weighted
more heavily in the quadratic cost functional than the hub shear components. It is inter-
esting to note from Fig. 72 for the simple spring restrained blade model, almost no change
is evident in the vibration levels due to the addition of a trailing edge flap to the blade span.

The minimum value of the quadratic cost functional achieved using the actively con-
trolled flap and conventional IBC implemenied on the spring restrained blade model is
compared in Fig. 73 with the results obtained using the fully elastic blade model. The figure
demonstrates that, despite the substantially greater vibration levels obtained using the
flexible blade, both control approaches implemented on the flexible blade were still very
effective in achieving substantial vibration reduction. In fact, comparison of the results
obtained using the two blade models reveals that better vibration reduction was achieved
in the case of the flexible blade model. It appears that the improvement in the dynamic
modeling capability provided by the flexible blade model results in an increase in the po-
tential of either control approach to reduce vibrations.

The most important difference between the two blade models evident in Fig. 73 is the

difference in the degree of degradation displayed in the effectiveness of the actively con-
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trolled flap at the higher blade torsional frequencies. The severity of the reduction in
control flap effectiveness displayed in the simple spring restrained blade model may be
attributable to the fact that this model, in which the blade flexibility is assumed to be con-
centrated at the blade root, is unable to model changes in twist distribution.

The maximum control input amplitudes obtained using the two blade models are com-
pared in Fig. 74. The figure reveals that, despite the much larger uncontrolled vibration
levels observed in the flexible blade model, the required conventional IBC pitch input am-
plitudes are almost identical for the two blade models. This is not true in the case of the
actively controlled flap; except for blades relatively soft in torsion (wyy < 3.5/rev), much
larger control flap deflection angles are required to reduce vibrations in the case of the
flexible blade model, in some cases as much as 50% larger.

The power requirements obtained using the two blade models are compared in Fig. 75.
The figure shows that the difference in power requirements between the two control ap-

proaches is very similar between the'two blade models.

10.2 IMPORTANCE OF THE CONTROL FLAP SPANWISE LOCATION

in the nominal configuration the trailing edge flap is centered about the 75% span po-
sition (i.e., x, = 0.75R), which is very close 1o the node location of the second flap and lag
bending modes. 1t was postulated that centering the trailing edge flap about this node point
would minimize its potential for exciting the second bending modes of the flexible blade.
The effect of locating the centroid of the trailing edge flap away from this node point was
investigated by moving the centroid of the control flap outboard to the 85% span position
(x. = 0.85R). The effect on the uncontrolled vibration levels is shown in Fig. 76 by com-
paring the baseline value of the cost functional J for x; = 0.75R and x. = 0.85R. The figure
reveals that moving the trailing edge flap outboard of the node results in a 50% decrease
in the baseline value of J, which represents about a 30% reduction in the baseline vi-

brations.
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The effect of moving the trailing edge flap outboard on its ability to reduce vibrations is
shown in Fig. 77. One might expect that moving the control flap outboard on the blade
span, in the direction of greater effective air speeds, would have a beneficial effect on the
vibration reduction potential of the actively controlled flap. However, Fig. 77 depicts a
significant reduction in control flap effectiveness when the flap is moved outboard, for
blades with a fundamental rotating torsional frequency in the vicinity of 4/rev. It is inter-
esting to note that this is very close to the rotating frequency of the second flap mode,
which is given by wg, = 3.97/rev when x. = 0.85R. Thus it appears that moving the
centroid of the trailing edge flap away from the node location of the second flap mode,
where the interaction between the second flap mode and the fundamental torsional mode
is minimized, has a detrimental effect on the vibration reduction potential of the actively
controlled flap when the frequencies of the two modes are close. However, Fig. 77 shows
a substantial increase in the vibration reduction effectiveness of the control flap for blades
relatively stiff in torsion when x. = 0.85R.

The effect of moving the centroid of the control flap outboard on the required control flap
deflection angles is depicted in Fig. 78. The figure reveals that the decrease in control flap
effectiveness in the vicinity of wy, = 4/rev is accompanied by a small increase in control
input amplitudes. while a minor decrease in control angles is observed in the vicinity of
wrq = 4.5/rev. It should be noted that wy, = 4.5/rev is very close to the rotating frequency
of the second lag mode. which in this case is given by Wy = 4.48/rev.

Finally. the effect on tHe power requirements of the actively controlled flap when it is
moved outboard is presented in Fig. 79. The figure shows that the increase in control an-
gles in the vicinity of wyy = 4frev is accompanied by about a 100% increase in the power
required to actuate the control flap. However, for blades relatively stiff in torsion (
w71 > 4.5/rev), there is about a 70% reduction in the power required.

Figures 77 through 78 demonstrate that, in the present case. coupling of the funda-
mental torsional mode with the second flap bending mode has a detrimental impact on
control flap performance. On the other hand, coupling with the second lead-lag mode ap-

pears to have a beneficial impact on control flap performance. Finally, moving the control
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flap outboard on torsionally stiff blades improves its vibration reduction effectiveness and

results in a significant decrease in power consumption.

10.3 EFFECT OF HINGE MOMENT CORRECTION

The influence of changes in the value of the aerodynamic hinge moment correction
factor C; on the performance of the actively controlled flap was studied using the flexible
blade model, by changing the nominal value of C;= 0.6, used up until this point, to the more
conservative value of C;=05. Recall that C; is used not only to scale the aerodynamic
hinge moment, but also to scale the additional aerodynamic lift and piiching moment
produced by the partial span trailing edge flap. A comparison of the degree of vibration
reduction achieved using the actively controlled flap for the two different values of C; is
presented in Fig. 80. The figure shows that decreasing the value of C; by about 15% has
almost no effect on the potential of the actively controlled flap to reduce vibrations. How-
ever. a comparison of the control input requirements, shown in Fig. 81, and the power re-
quirements, shown in Fig. 82 reveal that decreasing C, by about 15% results in a
corresponding increase in both the input angles and power requirements to implement

control.

10.4 EFFECT OF COMPRESSIBILITY CORRECTION
The effect of introducing compressibility correction was also studied using the flexible
blade model. Compressibility effects are accounted for using the Prandtl-Glauert cor-

rection factor. defined as

p = \‘1 - Miv (10.7)
to obtain the compressible lift curve slope:
a a
a=— = -2 (10.8)
B M2
NV T Wik
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where M, . is the local Mach number at x, Y. The local Mach number on the blade can
be expressed as

VUT+ UG

XY = Ca

where c, represents the speed of sound in air. If the dynamics of the blade are neglected,

then the local Mach number can be approximated as[25]

M,y = Mt,p(Lwasm V) (10.9)

where an = (CQ)R)/c, represents the Mach number at the blade tip in hover. In the results
presented in this section the compressible lift curve slope was obtained using the value
M, = 0.65. which is a typical value associated with modern helicopter rotors[24].

Figure 83 presents comparisons of the baseline (uncontrolied) values of the cost func-
tional obtained using the incompressible and the compressible lift curve slopes. The
comparisons are presented for both the conventional blade configuration and the blade
configuration incorporating the trailing edge flap. It is evident from the figure that overall
the introduction of compressibility has a small but significant effect on the uncontrolled vi-
bration levels. The introduction of compressibility correction results in a small decrease
in the vibration levels obtained in the case of the conventional blade configuration (i.e. no
control ftap). It is interesting to note that when compressibility effects are accounted for,
the impact on the uncontrolled vibration levels due to the addition of the trailing edge flap
to the blade is reduced. resulting in very similar vibration levels for the two blade config-
urations.

The effect of compressibility correction on the vibration reduction effectiveness of the
actively controlled flap and conventional IBC is presented in Fig. 84. In both cases the in-
troduction of compressibility correction results in a small decrease in effectiveness for
blades relatively soft in forsion. and a small increase for blades relatively stiff in torsion.

Otherwise. there is little impact on the vibration reduction potential of either control ap-

proach.
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The effect of compressibility correction on the maximum input angles required by the
two control approaches is investigated in Fig. 85. Only small changes in the control input
requirements of conventional IBC can be observed. In the case of the actively controlled
flap, there is no significant change in control input requirements other than a smatl in-
crease (about two degrees) for blades relatively stiff in torsion.

The effect of compressibility correction on the power required to implement the two
control approaches is investigated in Fig. 86. A small decrease in power requirements,
ranging from 16-19%, is observed for both control approaches when compressibility effects
are included. Since the percent decrease is roughly the same for both the actively con-
trolled flap and conventional 1BC, the difference in power requirements between the two
control approaches is essentially unchanged from the incompressible case.

When considering Figs. 83 through 86, it should be kept in mind that the introduction of
compressibility is accomplished by scaling the incompressible lift curve slope by the factor
(1/8). which is greater than one. Thus the introduction of compressibility resuits in an ef-
fective increase in the sensitivity of the aerodynamic loads to changes in both the pitch
angle of the blade and the deflection angle of the trailing edge flap. However, for an ad-
vance ratio of g = 0.3 and a tip Mach number of M, = 0.65, which has been used in the
present case, it can be determined from Eq. (10.9) that (1/8) ranges between

103 < - < 144 over the span of the trailing edge flap, and between 102 < — < 1.87

B B
over the span of the entire blade. The value of (1/B) does not deviate too far from unity in
the present case (M, = 0.65 and u = 0.3), and thus the introduction of compressibility has
a minor effect on the results. However, if either M"p or u were increased, then a larger

portion of the blade span would be in the transonic range over a greater portion of each

revolution, and therefore the effects of compressibility would be more pronounced.
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Chapter XI

TIME DOMAIN SOLUTION OF THE EQUATIONS OF MOTION

The resulls presented so far have been obtained using the harmonic balance technique
to extract the trim state and blade response in a completely coupled manner. This tech-
nique is based upon the assumption of a periodic steady state response solution under
fixed-hub steady flight conditions. The periodic assumption allows the transformation of
the system of nonlinear ordinary differential equations in the time domain to a set of non-
linear algebraic equations in the frequency domain. Though this transformation increases
the order of the system by a factor of (1 + 2N},), there are many packaged subroutines
available which efficiently solve large systems of nonlinear algebraic equations. In addi-
tion, the transformation of the aeroelastic response problem to the frequency domain per-
mits its simultaneous solution with the trim problem, which is generally formulated in the
frequency domain for steady flight conditions.

Another approach for generating the trim and aeroelastic response solution involves a
two step procedure; where a simplified aeroelastic response analysis is used first to obtain
the trim state of the rotor, which is subsequently used in the solution of the fult aeroelastic
response problem in the time domain using quasilinearization. This method requires the
linearization of the blade equations about a k-th iteration, which when written out in first

order form read[3,50]
Yirr = (AT Vir + () (11.1)
where the vector of states is defined as
- -7 -;T T
y=1{dy Qp} (11.2)

The matrix [A,] and the veclor?k for the k-th iteration are defined as
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(0] (1]

[Ad = » .
MK - MG

—_

0

_f.:

M ([T + [CTap + [KIap — fok

where the subscript k indicates the term is evaluated at the k-th iteration. In the above

expressions

[M] = éfo/éa, (11.3)

[C]=if/éa, (11.4)
[K] = {To/aa, (11.5)

Quasilinearization generates the nonlinear solution iteratively through successive lin-
ear approximations of the system. Each stage of the procedure begins by linearizing the
system about some periodic solution _th The transition matrix [, (27)] at the end of one
period is obtained from the homogeneous linearized system and the solution 5;(2/".) corre-
sponding to a zero initial state is obtained from the nonhomogeneous linearized system.

These are then used in the following result from linear periodic system theory[3.50]

V(0) = ([1] — [®,2m)]) " y,(2n)

to obtain the initial conditions corresponding to the converged steady state periodic re-
sponse of the forced linearized system. Generating the periodic response with this initial
condition gives the periodic solution for the next iteration. The procedure is continued until
no change is observed in the periodic solution between two successive iterations.

Solving the response problem directly in the time domain has the advantage that the
order of the system is only doubled. thus requiring much less memory than the harmonic
balance technique. However, the quasilinearization procedure has the disadvantage of

being computationally intensive. Considerable effort must be expended during each stage
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of the iteration to linearize the system about the current solution and to obtain the transi-
tion matrix at the end of one period. Evaluation of the transition matrix requires the sol-
ution of the homogeneous linearized system either n times (where n is the order of the
problem ) as in the n-pass method, or the solution of an equivalent n? order system a single
time as in the single pass method[50]. Furthermore, there are two convergence loops
associated with quasilinearization: one associated with each of the linearized systems,
and one associated with the solution of the nonlinear system.

A more straightforward approach to obtaining the nontinear system response involves
solving the nonlinear ordinary differential equations of motion directly in the time domain.
This can be accomplished by using a general purpose ordinary differential equation (ODE)
solver capable of handling nonlinear system of equations. This approach retains the low
workspace requirements of quasilinearization but eliminates the need to successively
linearize the system and evaluate the transition matrix, thus saving considerable time and
computational effort. Furthermore, there is only a single convergence loop.

The only possible drawback to this approach is that it may be necessary 1o solve the
trim and response problems separately. However, it has been shown in this study that the
simple spring restrained blade model is adequate to obtain the trim state of the rotor.
Comparisons between the trim state obtained using this simple model with that obtained
using the fully elastic blade model showed that the trim solutions differed by less than 5%
(see Figs. 66 and 67). Thus it is assumed in the solution of the equations of motion of the
blade in the time domain that the trim state of the rotor is known beforehand with sufficient

accuracy.
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111 GENERAL PURPOSE ODE SOLVER DE/STEP

In this study the nonlinear ordinary differential equations of motion are integrated nu-
merically in time using the general purpose Adams-Bashforth ODE solver DE/STEP[48].
The code as well as the theory behind its development is presented in detail in Ref. 48.

In order to use the ODE solver, the equations of motion must be expressed in first order

form[48]:

v = Fy:ib) (11.6)

where the function F can be a nonlinear function of§ and time.
However, the equations of motion of the isolated blade have been formulated as a set

of fully coupled, nonlinear, second order ordinary differential equations:

f(dp- Ap: Ap, A 1) = O
In order to express the blade equations in first order state variable form it is necessary to

first decompose the equations into the form:

fo = Opldp: Ao Ao 1) + [M(@p. G )]ap = O (11.7)

where [M] represents the mass matrix defined by Eq. (11.3). In general this matrix has
off-diagonal terms due to the assumption of moderate deflections, which couples the
equations. In this study explicit expressions for ab and [M] were obtained using the
MACSYMA symbolic manipulation program.

Solving Eq. {(11.7) for the vector of generalized accelerations yields:

a4, = —[M] g, (11.8)

Using the above expression, the system of blade equations can be written in first order

state-variable form:
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- (01 073 |. (0]
y = y + . (11.9)
(0] [0] ~{M] g,

where [I] represents an (Npoe » Npoe) identity matrix. The above first order system is
nonlinear through the [M]~! ab term. It should be emphasized that the matrix inverse re-

presented by [M]~" is performed numerically in the FORTRAN program.

11.1.1 Numerical Integration Error Control
The ODE solver DE/STEP attempts at each internal step 1o control each component of

the local error vector so that
[€10cali)l < RELERR x |y (i)] + ABSERR

where RELERR and ABSERR are the relative and absolute error bounds, respectively,
specified by the user. This is a mixed relative-absolute error criterion that includes, as
special cases. pure absolute error (RELERR =0) and pure reiative error {ABSERR =0). The

code does not attempt to control the global error directly, so it is not necessarily true that
|€gionali)l < RELERR » [y(i)| + ABSERR

at the end of the integration. For most practical problems this inequality is approximately
true and RELERR and ABSERR are chosen accordingly.

In choosing an error criterion, Ref 48 suggests the following rules of thumb: “If the
solution changes a great deal in magnitude during the integration, and you wish to see this
change. use relative error. But use caution, since pure relative error is not defined when
the solution vanishes. |If the solution does not vary much, or if you are not interested in it
when 1 is small, use absolute error. A mixed criterion is probably best and safest choice.”

In this study a mixed criterion is used in which the absolute error is set equal to the

relative error {i.e., ABSERR =RELERR).
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11.1.2 Workspace Requirements

The workspace requirements are defined as the length of the WORK array required by
the solution subroutines to store all the information necessary to obtain the solution. The
workspace requirements of DE/STEP are approximately 100+21*N. where N = 2Npo¢ is the
number of equations. This is considerably smaller than the workspace requirements of the
IMSL subroutine DNEQNF, which are roughly 3°N*"2+ 15N where N = Npoe(1 + 2Ny) is the
number of equations. When seven rotating mode shapes are used to represent the blade
flexibility (i.e., Npog = 7). the workspace requirements of DE/STEP are approximately 394.
The workspace requirements of DNEQNF in this case are at least 19,000 (for Ny =5). Thus

the memory requirements of DE/STEP are less than 2% of those of DNEQNF.

11.2 VALIDATION OF THE TIME DOMAIN SOLUTION PROCEDURE

in order to validate the numerical integration procedure (DE/STEP) used in this study,
the converged steady state solution obtained by numerically integrating the equations of
motion is compared with the results obtained using the harmonic balance technigue.
Comparisons are made using the flexible blade configuration presented in Table 8, which
represents a soft-in-plane rotor blade with uniform mass and stiffness.

As a first check of the ODE solver. the steady state trim and response solution obtained
using the harmonic balance technique is used as input for the numerical integration pro-
cedure. Assuming the state space equations represented by Eq. (11.9) have been formu-
lated correctly, the integrated response solution should compare very favorably with the
harmonic balance result. Any differences displayed in the response results can be attri-
buted to numerical integration error. Thus comparisons of the integrated response sol-
ution obtained using steady state initial conditions with the periodic response solution
obtained using the harmonic balance technique should reveal the magnitude of the inte-
gration errors. Knowledge of the level of accuracy achieved by the numerical integration
procedure is essential to properly select the magnitude of the error tolerance required by

DE/STEP.
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TABLE 8
Elastic blade data used in time domain integration

Dimensional Data

R = 491m
2 = 425RPM
My = 53kg
Nondimensional Data

Flight Data
u =03

Rotor Data
Np = 4
C, = 2b = 0.05498 L, =10
Xp =00 Xp = 00
Imgo = 0.0000 e =00
gz = 0.0004 Hpt =00
wp = 1.123, 3.41, 762 a,=2n
w = 0.732, 4.46 Cio = 0.01
wt = 3.00, 8.55 Cho = 0.0
vy =55 o = 0.07

Helicopter Data
Cyw = 0.005 1Cy = 0.01A,
Xea = 00 Zea = 03
XFC - OO ZFC — 03

The deviation of the integrated response solution from the steady state solution was
examined for three error tolerances: RELERR=ABSERR= 103, 10~% and 10~5 . The de-
viations in the tip displacements at the end of one revolution from their appropriate steady
state values are shown in Fig. 87 for all three error tolerances. The deviations in the tip
velocities are shown in Fig. 88. As expected the smallest deviations were obtained when
using the smallest error tolerance 10~2. Figures 87 and 88 reveal that the tip velocities
deviate more significantly than the displacements from the appropriate steady state values.
The magnitude of the deviation of the displacements was less than 1% for all three error
tolerances. But only at the smallest error tolerance {(10~°) was the deviations in all three
velocities under 1%. It should be noted, however. that the flap and lead-lag velocities are
smaller in magnitude than the tip displacements, and thus exhibit higher relative error.
This could be avoided using pure relative error (i.e., ABSERR =0), but this would create

problems if any of the state variables approached zero.
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The number of integration steps and corresponding integration times per revolution
required by DE/STEP to achieve a given error tolerance was also examined. The number
of integration steps per revolution is presented in Fig. 89 for all three error tolerances
considered. The corresponding integration times (CPU seconds) per revolution are shown
in Fig. 90. These execution times are for an IBM ES3000 model 900 mainframe computer.
As expected significantly more integration steps and longer integration times are required
to obtain higher levels of numerical accuracy. It is interesting to note from Figs. 87 and 90
that a significant increase in numerical accuracy can be achieved by decreasing the error
tolerance from 10~3 to 10-4 without incurring a substantial increase in integration time.
However, decreasing the error tolerance further to 103 results in a relatively minor in-
crease in numerical accuracy but a relatively large increase (by about 45%) in integration
time.

Based on the comparison studies conducted, which are described above, the error tol-
erance ABSERR =RELERR =10—% was selected as a good compromise between numerical
accuracy and integration time. Unless stated otherwise, this error tolerance is used
throughout the rest of this study dealing with the numerical integration of the equations of
motion. The level of numerical accuracy achieved using this error tolerance is considered
to be acceptable; the tip displacements at the end of each revolution deviate from their
steady state values by less than 0.25%, and the tip velocities deviate by less than 3%. A
39, deviation in the lead-lag velocity is considered acceptable due to the relatively small
magnitude of this velocity component. The small increase in accuracy which could be
achieved using the error tolerance 10> does not justify the substantial increase in required
integration time.

The integrated response solution obtained using steady state initial conditions and an
error tolerance of 10~% is compared in Fig. 91 with the harmonic balance response solution.
The figure shows that the response solutions are essentially identical. thus validating both
the numerical integration procedure DE/STEP and the state-space form of the equations

represented by Eq. (11.9).
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As mentioned previously, the ODE solver DE/STEP does not attempt to control the
global error directly, but only places constraints on the local error during each integration
step. To demonstrate that the global error is bounded, and also to verify that the periodic
response in Fig. 91 truly represents the converged solution, the deviation in the tip dis-
placements and velocities at the end of each revolution are presented in Figs. 92 and 93,
respectively, for the first ten rotor revolutions. It is evident from these two figures that the
errors in the displacements and velocities remain bounded during the ten revolutions: the
tip displacements at the end of each revolution differ from the steady state values by less
than 0.5%, and the tip velocities differ by not much more than 3%. Therefore the steady
state response solution obtained using the harmonic balance technique truly represents

the converged periodic solution.

11.21 Convergence to a Steady State Condition

't was demonstrated in the previous section that the numerical integration procedure
reproduces the steady state solution indefinitely when steady state conditions are used as
input. The convergence of the numerical integration procedure to the appropriate steady
state solution is investigated by starting the integration procedure at conditions which differ
greatly from steady state conditions. This will also reflect upon the robustness of the in-
tegration procedure as far as numerical stability is concerned.

Implicit in the application of the harmonic balance technique is the assumption of a
globally stable system. Although the stability of the system is investigated for small per-
turbations about the steady state condition, the stability of the system in the presence of
large disturbances is not addressed. This may lead to doubts concerning whether the
system will indeed approach a steady state condition without passing through an unstable
region. Therefore in this section the equations of motion are integrated numerically in time
using a zero initial condition vector to verify convergence to a steady state periodic sol-

ution when the initial conditions are far from the steady state values. This will also provide
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a check on the convergence of the numerical integration procedure to a steady state sol-
ution.

When using a numerical integration scheme such as DE/STEP to obtain the steady state
response solution it is necessary to define the convergence criteria used to determine
when a steady state solution has been reached. Since a periodic solution is being sought,
the blade response can be assumed to have converged when the no change is observed
in the response over two successive revolutions. Recognizing the fact that the blade re-
sponse during a given revolution is determined completely by the value of the state vector
at the beginning of the revolution, the solution can be considered to have converged when
the state vector at the end of the revolution matches its value at the beginning of the rev-
olution. Since this will never be true exactly due to numerical integration errors (see Figs.
92 and 93), it is necessary to define acceptable levels of variation in the state vector of the
converged solution from one revolution to the next. It is not necessary to examine each
element of the state vector (which contains a total of seven generalized displacements and
seven generalized velocities), but only the tip displacements and tip velocities.

In this study the response is assumed tc have converged to a steady state solution
when the maximum deviation in the tip displacements from one revolution to the next is
no greater than 1%, and the maximum deviation observed in the tip velocities is no greater
than 5% These tolerances were established based on consideration of Figs. 92 and 93 for
the error tolerance 107* .

The tip response solution obtained by integrating from a zero initial state vector is
compared in Fig. 94 with the steady state response solution for the first two rotor revo-
lutions. The figure shows that the flap and torsional responses quickly approach their
steady state solutions, deviating only slightly by the end of the second revolution. How-
ever. the lead-lag responses differ considerably during the two revolutions; this is a well
known behavior which is a resull of the low levels of damping associated with this degree
of freedom.

To examine more closely the rate of convergence of the integrated response solution

to steady state conditions, the flap, lead-lag and torsional tip delflections at the end of each
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rotor period are plotted in Fig. 95 for the first thirty revolutions. The tip deflections can be
seen to oscillate about their steady state values with decaying amplitudes. These oscil-
lations are due to the presence of transient blade dynamics with frequencies which are not
integer multiples of the rotor frequency Q. The rate at which these transients die out de-
pends on their frequency and damping. The fiap and torsional modes are very highly
damped with frequencies greater than the rotor frequency Q. Thus the flap and torsional
responses converge fairly quickly (in about six revolutions) to their steady state solutions,
as shown in Fig. 95. The lead-lag modes, on the other hand, are very lightly damped.
Furthermore, the fundamental lead-lag mode has a rotating frequency much lower than the
the rotor frequency. Therefore many rotor revolutions (about thirty) are required for the
lead-lag transients to die out, which is quite evident from Fig. 95.

The number of integration steps required by DE/STEP during each of the first ten revo-
lutions to integrate from a zero initial state is investigated in Fig. 96. The corresponding
integration times (executed on the IBM ES9000 mainframe) are shown in Fig. 97. Though
only an error tolerance of 10~% has been used to obtain the blade response, required in-
legration steps and times per revolution are also presented for error tolerances of 10-3 and
10~> for comparison. The two figures show that many more integration steps and much
longer integration times are required during the first few revolutions. when large changes
in the blade response are occurring. After the first two revolutions the number of inte-
gration steps and integration time per revolution quickly approach the values associated
with the converged solution, as shown in Figs. 87 and 88. It should be kept in mind that the
steady state solution is periodic with many higher harmonic components. Thus even after
convergence has occurred. many steps are required per revolution to properly capture its
time varying nature.

Using the convergence criteria defined earlier in this section, the response of the sys-
tem can be considered to have converged to a steady state solution from zero initial con-
ditions in about thirty revolutions. DE/STEP required about 3,300 integration steps'and an
execution time of 23 CPU seconds (on the IBM ES3000 mainframe) for the error tolerance

of 1074, This is comparable to the 21 CPU seconds required by the IMSL subroutine
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DNEQNF when six harmonics are used. It should be noted, however, that while the con-
vergence time of DNEQNF is relatively insensitive to the initial guess used, convergence
of the integration procedure can be greatly accelerated through a more judicious selection
of the initial condition vector.

The convergence to a trimmed rotor condition from a zero initial state is investigated
in Figs. 98 and 99. The average values of the longitudinat and lateral hub shears over the
first thirty revolutions are compared in Fig. 98 with the steady state {trimmed) values ob-
tained using the harmonic balance technique. The average values of the rolling and
pitching moments are likewise compared in Fig. 99. The comparisons reveal that, although
there is significant deviation from a trimmed flight condition during the first few revolutions,
force equilibrium is attained fairly quickly. Moment equilibrium appears to take much
longer, but this is due to the fact that the moments are much smaller in magnitude and thus
more sensitive to numerical errors.

Finally. the convergence of the 4/rev hub shears and moments to steady state values
is investigated in Figs. 100 through 102. The amplitudes of the 4/rev hub loads during the
first thirty revolutions are compared in these figures with the steady state values calculated
using the harmonic balance technique. Examination of Figs. 100 through 102 reveals that
the vibration magnitudes deviate substantially during the first few revotutions, when large
changes in the blade response are taking place. These large deviations can be attributed
to the presence of transient vibrations resulting from the transient blade dynamics. As
these transients die out, the vibration levels eventually converge to the appropriate steady

state values. as shown in Figs. 100 through 102.

11.3 TIME DOMAIN RESPONSE TO CONTROL

The optimal control strategy used in this study is based on a quasistatic frequency do-
main representation of the helicopler response to control. This representation is only
strictly valid when relating the stcady state response of the system to a periodic control

input. and thus the resulling control strategy only addresses the reduction of the steady
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state vibration levels. The need to address the transient vibrations is commonly eliminated
by the quasistatic assumption, which assumes the system response is immediate with no
time lag or transient dynamics. This is commonly justified by one or more of the following
assumptions: 1) the magnitude of the transient vibrations are small compared to the
steady state levels so they may be neglected; or 2) the transients are sufficiently damped
and of high enough frequency (compared to Q) such that the transient vibrations die out
fairly quickly; or 3) the resuiting control strategy will also produce reductions in the tran-
sient vibration levels. Figures 100 through 102 demonstrate that the transient vibrations
are neither small nor do they die out very quickly. In addition, since the transient vibrations
are generally not 4/rev in the fixed frame, it is unreasonable to expect them to respond to
control in the same manner as the 4/rev steady state vibrations.

The validity of the optimal control strategy used in this study to control the steady state
vibration levels, as well as the validity of the quasistatic assumption, is investigated in this
section by implementing the conirol solution obtained in the frequency domain in the time
domain. This is accomplished by numerically integrating the equations of motion in time
from steady state initial conditions while applying the optimal control solution in open-loop
mode starting at y = (2t)= 0. The magnitudes of the 4/rev hub shears and moments dur-
ing the first thirty revolutions are plotted in Figs. 103 through 105 Except for the yawing
moment component, which shows a slight increase (by about 3%) during the first revo-
lution, the figures depict immediate reductions in each of the 4/rev hub load components.
After only two revolutions all vibration components have decreased to levels substantially
below their baseline values. By the third revolution the vibration levels (excluding the
yawing moment) are reduced to less than 209 of their baseline values, and to less than
10% by the tenth revolution. The smaller degree of reduction achieved in the 4/rev yawing
moment is due to its relatively small baseline value.

It is evident from Figs. 103 through 105 that the controlled vibration levels do not im-
mediately attain their final values when the control is applied. This is due to the presence
of transient blade dynamics initiated by the change in the control input (from a zero control

input to the optimal control input). This change alters the condition of the blade and thus
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its steady state response. However, this new response cannot be attained instantaneously.
The transient blade dynamics can be considered to “transport” the blade to the new steady
state response. Thus the measured vibration levels will not attain their final vatues until
all transients have died out. This must be kept in mind when implementing the control
strategy in the closed-loop mode. Sufficient time must be allowed to elapse between
control steps to allow the vibration levels to settle down to their steady state values each
time the control is updated. Otherwise the feed-back controller could cause the system to
become unstable.

Figures 103 through 105 demonstrate that the optimal control solution based on a linear,
quasistatic frequency domain representation of the helicopter response to control produces
substantial reduction in the vibration levels when applied in the open-loop mode in the time
domain. However, these figures show that the system response is not immediate; quite a
few rotor revolutions, around ten in the present case, must transpire before transient ef-
fects can be ignored. The quasistatic assumption may be considered to be valid when
devising control strategies for controlling vibrations experienced in steady level flight, but
an unsteady time domain control approach would be better suited to deal with the transient

vibrations produced by sudden changes in flight condition or gusts.

198



Chapter XI|

CONCLUDING REMARKS

This study has developed a rotor aeroelastic analysis capable of modeling the effects
of individual blade control (IBC) in forward flight implemented through an actively con-
trolled partial span trailing edge flap on each blade capable of introducing control for vi-
bration reduction directly in the rotating reference frame. The analysis program also
posseses the capability to implement conventional IBC, in which the pitch angle of each
blade is controlled independently in the rotating frame for vibration reduction.

Two btade models incorporating fully coupled flap-lag-torsional dynamics were utilized
to represent an isolated hingeless rotor blade. In the first stage of this research the fea-
sibility of this new control approach was investigated using a simple offset-hinged spring
restrained blade model blade model with three degrees-of-freedom representing the dy-
namics of the isolated blade. In the second stage, in which the practical aspects of im-
plementation on a real rotor blade were studied. a realistic fully elastic blade model with
seven rotating coupled modes representing blade flexibility was employed. In both cases
the inertial loads were formulated in a straightforward manner using D’Alembert’s princi-
ple, and an extention of Greenberg quasisteady aerodynamics which includes the effects
of a flap were used to formulate the aerodynamic loads. Four blades were combined to
represent a four-bladed hingeless rotor configuration in steady level flight. A fully coupled
trim and response analysis was used based upon the harmonic balance technique.

Simultaneous reduction of the vibratory hub shears and moments was achieved by
minimizing a quadratic cost functional consisting of the weighted sum of the squares of the
vibration magnitudes and control input amplitudes. Two linear quasistatic frequency do-
main representations of the helicopter vibratory response to control were considered: a
global model which assumed linearity over the entire range of control; and a local modet

based on a linearization of the system about the current control.
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The most important conclusions obtained in this analytical study using the two blade
models are presented below. These conclusions should be considered within the frame-

work of the simplifying assumptions upon which the aeroelastic simulation was based.

Spring Restrained Blade Model

The global and local controllers implemented through an actively controlled flap located
on each blade were employed to produce simultaneous reduction in the vibratory hub
shears. The effectiveness of the actively controlled flap to reduce vibrations and the re-
quired control input angles and power expenditures were investigated. Comparisons with
conventional {BC were carried out to determine the relative effectiveness and efficiency of
the two approaches. The investigations were carried out over a range of blade funda-
mental rotating torsional frequencies. The most important conclusions are presented be-
low.

(1) Comparisons of the relative vibration reduction effectiveness of control implemented
through the actively controlled partial span trailing edge flap with conventional IBC re-
vealed that comparable levels of vibration reduction can be achieved by the two control
approaches. Thus the actively controlled flap is a very attractive device because it has no
effect on the airworthiness when compared to conventional 1BC.

(2) Comparisons of the maximum input angles and the power requirements needed to
implement both contol approaches were conducted. Obviously larger control angles were
required for the actively controlled flap, however these angles were quite practical. The
power required to implement conventional IBC was between 7 to 12 times larger than that
required for the actively controlled flap. Therefore the actively controlled flap is a much
more efficient means for vibration reduction in helicopters than conventional IBC.

(3) The vibration reduction characteristics of both global and local controllers were
considered. While both controllers were effective in producing substantial vibration re-
duction, the local controller provided better vibration reduction in each case.

(4) A detaited examination of the influence of the torsional stiffness of the blade on vi-

bration reduction effectiveness was conducted. It was found that as the torsional sliffness
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of the blade is increased, larger control input angles and more power were required to
achieve roughly the same degree of vibration reduction. The best vibration reduction was
achieved for a fairly flexible blade configuration in torsion. This observation is consistent

with the findings of Ref. 28.

Fully Elastic Blade Model

The local controller was employed to simultaneously reduce the vibratory hub shears
and moments using the actively controlled flap and conventional IBC. Practical issues
concerning the implementation of control through an actively controlled flap on a flexible
blade were considered. These included: (a) the specific spanwise location of the trailing
edge flap; (b) the effect of hinge moment correction; {c) the effects of compressibility, and
(d) the importance of the span and chord length of the trailing edge flap. These investi-
gations were carried out over a range of blade torsional frequencies. The most important
conclusions obtained in this analytical study are presented below.

(1) Comparing the vibration reduction effectiveness of the actively controlled flap with
conventional IBC revealed that approximately the same degree of vibration reduction can
be achieved using either approach when implemented on the fully elastic blade. Further-
more. comparisons of power requirements demonstrated that the actively controtled flap
required substantially less power. between 4% and 16% of the power required to imple-
ment conventiona!l IBC. Thus the comparisons performed using the flexible blade model
validate the results of the first stage of the feasibility study that the actively controlled flap
is a very attractive device for vibration reduction, both due to its power efficiency and be-
cause it has no effect on the airworthiness when compared to conventional IBC.

{2) The uncontrolled vibration levels obtained using the fully elastic blade model and the
spring restrained blade model were compared. It was found that the increése in the dy-
namic modeling capability available with the fully elastic blade model results in a dramatic
increase in the calculated amplitudes of the vibratory hub loads. Comparing the control
studies performed using the two blade models, however, revealed that despite the much

higher vitration levels in the case of the flexible blade model, both control approaches
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were still very effective in reducing the vibrations, without significant increases in the input
amplitudes or power consumption compared to the spring restrained blade model.

(3) A detailed examination of the influence of the blade torsional stifiness on the vi-
bration reduction potential of the actively controlled trailing edge flap was conducted using
both blade models. It was found that as the torsional stiffiness of the blade increased, both
blade models exhibited a decrease in the effectiveness of the control flap and an accom-
panying increase in power requirements. However, the decrease in the effectiveness and
increase in power requirements evident in the flexible blade model is much less severe
than that observed using the spring restrained blade model.

(4) The importance of the spanwise location of the control flap was also considered. It
was found that the vibration reduction effectiveness and power requirements of the control
flap are strongly influenced by its spanwise location on the flexible blade. Thus the specific
spanwise location of the actively controlled flap on the blade span is a very important de-
sign consideration. This sensitivity to the spanwise location of the control flap, which re-
sults from the interaction of the fundamental torsional mode and the second flap and
lead-lag bending modes of the blade, is not displayed in the spring restrained blade model.
Thus the flexible blade mode! provides a much better representation of the dynamics of a
real helicopter blade.

(5) The importance of the aerodynamic hinge moment correction factor and
compressibility correction in the vibration reduction potential of the actively controlled flap
were investigated using the flexible blade model. It was found that these two parameters
play a small but potentially significant role.

(6) The effect of varying the span and chord length of the trailing edge flap was inves-
tigated. It was found that in most cases changing the size of the control flap had little effect
on its potential to reduce vibrations, but had a substantial impact on the associated power

requirements and control input amplitudes.

Time Domain Solution
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In the final stage of this study, the nonlinear equations of motion of the fully elastic
blade mode! were integrated directly in time to validate the results obtained in the fre-
quency domain. The most important conclusions are presented below.

(1) Solution of the aeroelastic response problem through direct numerical integration
of the nonlinear equations of motion in the time domain is more efficient in terms of
memory usage than the harmonic balance technique, but is about as computationally in-
tensive, in terms of CPU time.

{2) The optimal control solution obtained from the frequency domain successfully re-
duces the steady state vibration levels when implemented in the time domain.

(3) The quasistatic assumption made in the representation of the steady state response
of the helicopter to periodic control is adequate for controlling steady state vibrations, but

is not valid when attempting to control transient vibrations.

203



10.

11.

12.

13.

14

REFERENCES

Blevins, R.D., Formulas for Natural Frequency and Mode Shape, Van Nostrand Reinhold
Company, 1979.

Carnahan, B, Luther, H A, and Wilkes, J.O., “ Applied Numerical Methods , ” John Wiley
and Sons, Inc., New York, 1969.

Celi, R., * Aeroelasticity and Structural Optimization of Helicopter Rotor Blades With
Swept Tips, ” Ph.D. Dissertation, Mechanical, Aerospace, and Nuclear Engineering
Department, University of California, Los Angeles, California, October 1387.

Celi, R. and Friedmann, P P, “ Rotor Blade Aeroelasticity in Forward Flight with an
Implicit Aerodynamic Formulation, ” AlAA Journal , Vol. 26, No. 12, December 1988, pp.
1425-1433.

Chopra, |, and McCloud, J.L., “ A Numerical Simulation Study of Open-Loop,
Closed-Loop and Adaptive Multicyclic Control Systems, ” AHS Journal , Vol. 28, No. 1,
January 1983, pp 63-67.

Crespo Da Silva, M.R M. and Hodges, D.H.. * The Role of Computerized Symbaolic
Manipulations in Rotorcraft Dynamic Analysis, ©' Computer and Mathematics with
Application 12A. pp 161-172. 1986.

Davis, MW., “ Refinement and Evaluation of Helicopter Real-Time Self-Adaptive Active
Vibration Control Algorithms, ~ NASA CR 3821, August 1984.

Dinyavari, M A H.. “ Unsteady Aerodynamics in Time and Frequency Domains for
Finite-Time Arbitrary Motion of Rotary Wings Blade Aeroelasticity, ” Ph.D. Dissertation,
Mechanical, Aerospace and Nuclear Engineering Department, UCLA, December 1984.

Friedmann, P P. * Recent Trends in Rotary-Wing Aeroelasticity, ” Vertica , Vol. 11, No.
1/2, pp 139-170, 1987.

Friedmann. P, " Helicopter Vibration Reduction Using Structural Optimization With
Aeroelastic/Multidisciplinary Constraints - A Survey, 7 Journa!l of Aircraft |, Vol. 28, No.
1. January 1991, pp 8-21.

Friedmann. P.P., " Formulation and Solution of Rotary-Wing Aeroelastic Stability and
Response Problems, " Vertica , Vol. 7. No. 2, 1983, pp 101-141.

Friedmann. P. and Kottapalli. S B.R., " Coupled Flap-Lag-Torsiona! Dynamics of
Hingeless Rotor Blade in Forward Flight. © Journal of the American Helicopter Saciety ,
Vol. 27, No. 4, Oct. 1982, pp. 28-36.

Friedmann, P., Hammond. C.E.. and Woo, T., © Efficient Numerical Treatment of Periodic
Systems with Application to Stability Problems, " International Journal of Numerical
Methods in Enginecering . No. 11, 1977. pp 1117-1136.

Friedmann. P.P. and Hodges. D H.. * Rotary-Wing Aeroelasticity with Application to VTOL
Vehicles, " Flight-Vehicle Matenals. Structures, and Dynamics, Vol. 5, Structural

Dynamics and Aeroelasticity , A K. Noor and S.L. Venneri Editors, published by ASME
1993, pp. 299-391.

204



15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

26,

27.

28.

29.

30

31

Friedmann, P. and Yuan, C., “ Effect of Modified Aerodynamic Strip Theories on Rotor
Blade Aeroelastic Stability, ” AIAA Journal , Vol. 15, No. 7, July 1977, pp. 932-940.

Friedmann, P., Yuan, K., Millott, T., and Venkatesan, C., “Aeroelastic Response and
Stability Correlation Studies for Hingeless Rotors in Forward Flight,” to be published as
AIAA paper No. 94-1722 in the proceedings of the AIAA Dynamics Specialists
Conference, Hilton Head, South Carolina, April 21-22, 13934,

Gray, R., and Davies, D.E., " Comparison of Experimentally and Theoretically
Determined Values of Oscillatory Aerodynamic Control Surface Hinge Moment
Coefficients, ”” RAE Technical Report 72023, March 1972,

Greenberg, J.M.. ““ Airfoil in Sinusoidal Motion in a Pulsating Stream, " NACA-TN 1326,
1947.

Greenwood, D.T., Principles of Dynamics , Prentice-Hall, Inc., 1988.

Ham, N.. “ Helicopter Individual-Blade Control and its Applications, " 39th AHS Forum,
St. Louis, Missouri, May 13883.

Ham, N.D.. © Helicopter Individual-Blade-Control Research at MIT 1977-1985, " Vertica
. Vol. 11, No. 1/2, pp. 109-122, 1987.

Jacklin, S.A., Leyland, J.A. and Blaas, A., “ Full-Scale Wind Tunnel Investigation of a
Helicopter Individual Blade Control System, ™ AIAA Paper 93-1361 CP, Proceedings of
the 34th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials
Conference, La Jolla, CA, April 19-22, 1993, pp 576-582.

Jacob, H.G., and Lehmann, G., ©“ Optimization of Blade Pitch Angle for Higher Harmonic
Rotor Control, " Vertica , Vol. 7. No. 3, 1983, pp 271-286.

Johnson, W., ** Self-Tuning Regulators for Multicyclic Contro! of Helicopter Vibrations,
" NASA Technical Paper 1996, 1982.

Johnson, W., Helicopter Theory , Princeton University Press, 1980.

Kretz, M.. “ Research in Multicyclic and Active Control of Rotary-Wings, " Vertica , Vol.
1, No. 1/2, pp. 95-105, 1986.

Lehmann, G., * The Effect of Higher Harmonic Control (HHC) on a Four-Bladed Hingeless
Model Rotor, ” Vertica , Vol. 9, No. 3, 1985, pp 273-284.

Lemnios, A.Z., Smith, A.F., “ An Analytical Evaluation of the Controllable Twist Rotor
Performance and Dynamic Behavior, © Kaman Report R-794. 1972,

Loewy, R.G., * Helicopter Vibrations: A Technological Perspective, * AHS Journal . Vol.
29, October 1984, pp 4-30.

McCloud, J.L. lll. and Kretz. M.. * Multicyclic Jet-Flap Control for Alleviation of Helicopter
Blade Stresses and Fuselage Vibration, " Rotorcraft Dynamics, NASA SP-352, 1974, pp
233-238.

Miao, W., Kottapalli, S.B.R., and Frye, HM., ** Flight Demonstration of Higher Harmonic
Control (HHC) on S-76, ” 42nd AHS Forum, Washington, D.C., June 1986, pp. 777-791.

205



32.

33

34.

35.

36.

37.

38.

39.

40.

M.

42.

43.

44.

45.

Millott, T., and Friedmann, P., "Vibration Reduction in Helicopter Rotors Using an Active
Control Surface Located on the Blade,” AIAA paper No. 92-2451, Proceedings of the 33rd
AIAA/ASME/ASCE/AHS Structures, Structural Dynamics and Materials Conference,
Dallas, Texas, April 1992, pp 1975-1988.

Miura. H., * Application of Numerical Optimization Methods to Helicopter Design
Problems-A Survey, ” Vertica , Vol. 9, No. 2, 1985, pp 141-154.

Molusis, J.A., ** The Importance of Nonlinearity on the Higher Harmonic Control of
Helicopter Vibration, ” 39th AHS Forum, St. Louis, Missouri, May 1983.

Molusis, J A, Hammond, C.E., and Cline, J.H., “ A Unified Approach to the Optimal
Design of Adaptive and Gain Scheduled Controllers to Achieve Minimum Helicopter
Vibration, " AHS Journal , Vol. 28, No. 2, April 1983, pp 9-18.

Nguyen, K_, and Chopra, |., “ Application of Higher Harmonic Control (HHC) to Rotors
Operating at High Speed and Thrust, ” Journal of the American Helicopter Society , Vol.
35, No. 3, July 1990, pp 78-89.

Ormiston, R.A. and Hodges, D.H., “ Linear Flap-Lag Dynamics of Hingeless Helicopter
Rotor Blades in Hover, ”” Journal of the American Helicopter Society , Vol. 17, No. 2, pp.
2-15, April 1972.

Papavassilioy, 1., " Nonlinear Coupled Rotor-Fuselage Vibration Analysis and Higher
Harmonic Control Studies for Vibration Reduction in Helicopters, ” Ph.D. Dissertation,
Mechanical, Aerospace and Nuclear Engineering Department, University of California,
Los Angeles, California. 1991.

Papavassiliou, I, friedmann, P.P., and Venkatesan, C., ** Coupled Rotor/Fuselage
Vibration Reduction Using Multiple Frequency Blade Pitch Control, ” Paper No. 91-76,
Proceedings of the Seventeenth European Rotorcraft Forum, September 24-26, Berlin:
Germany, pp 91-76.1 - 91-76.44.

Polychroniadis, M., and Achache. M., " Higher Harmonic Control: Flight Tests of an
Experimental System on SA 349 Research Gazelle, ” 42nd AHS Forum, Washington,
D.C., June 1986.

Reichert, G, “ Helicopter Vibration Control-A Survey, ” Vertica , Vol. 5, No 1, pp 1-20,
1981.

Richer, P_, Eisbrecher, H.H., and Kloppel, V., “ Design and First Tests of Individual Blade
Control Actuators, " Proceedings of the 16th European Rotorcraft Forum, Sept. 18-20,
1990, Glasgow, United Kingdom, pp 11l 6.3.1 - 111 6.3.9.

Robinson, L., and Friedmann, P.P., * Analytical Simulation of Higher Harmonic Control
Using a New Aeroelastic Model, " Proceedings of the 30th AlIAA/ASME/ASCE/AHS/ACS
Structures, Structural Dynamics and Matrerials Conference, Mobile, Alabama, April
1989. AIAA Paper No. 89.1321.

Robinson, L., and Friedmann. P.P., “ A Study of Fundamental Issues in Higher Harmonic
Control Using Aeroelastic Simulation, " Journal of the American Helicopter Society , Vol.
36, No. 2, April 1891, pp 32-43.

Robinson, L H., * Aeroelastic Simulation of Higher Harmonic Control, " Ph.D.
Dissertation, Mechanical, Aerospace and Nuclear Engineering Department, UCLA,
December 1989.

206



46.

47.

48.

48.

50.

51.

52.

55.

56.

57.

58.

59.

Rosen, A., and Friedmann, P.P., “ Nonlinear Equations of Equilibrium for Elastic
Helicopter or Wind Turbine Blades Undergoing Moderate Deformations, " NASA
CR-153478, December 1978.

Shamie, J., and Friedmann, P., “ Effect of Moderate Deflections on the Aeroelastic
Stability of a Rotor Blade in Forward Flight, " Paper No. 24, Proceedings of the 3rd
European Rotorcraft and Powered Lift Aircraft Forum, Aix-en-Provence, France,
September 1977.

Shampine, L.F. and Gordon, M K., Computer Solution of Ordinary Differential
Equations-The Initial Value Problem , W H. Freeman and Co., San Francisco, CA, 1975.

Shaw, J., Albion. A, Hanker. E.J., and Teal, R., “ Higher Harmonic Control: Wind Tunnel
Demonstration of Fully Effective Vibratory Hub Force Suppression, ” AHS Journal , Vol.
34, No. 1, January 1989, pp 14-25.

Takahashi, M.D. “ Active Control of Helicopter Aeromechanical and Aeroelastic
Instabilities, ” Ph.D. Dissertation, Mechanical, Aerospace and Nuclear Engineering
Department, UCLA, June 1988.

Taylor, R.B., Farrar, F. A and Miao, W., " An Active Control System for Helicopter
Vibration Reduction by Higher Harmonic Pitch, " AIAA paper No. 80-0672, 36th AHS
Forum, Washington, D.C., May 1980.

Theodorsen, T., “ General Theory of Aerodynamic Instability and the Mechanism of
Flutter, " NACA Report No. 496, 1935.

Venkatesan, C.. and Friedmann, P.. ** Aeroelastic Effects in Multi-Rotor Vehicles With
Application to a Hybrid Heavy Lift System. Part I: Formulation of Equations of Motion,
NASA Contractor Report 3822, August 1984.

v

Wempner. G., Mechanics of Solids with Application to Thin Bodies , McGraw-Hill, Inc.,
1973.

White. R.B., and Landah!l. M., " Effect of Gaps on the Loading Distribution of Planar
Lifting Surfaces, " AIAA Journal | Vol. B, No. 4, 1968, pp 626-631.

Wood, E.R.. and Powers, J.H., * Practical Design Considerations for a Flightworthy
Higher Harmonic Control System. ™ 36th AHS Forum. Washington, D.C., May 1380.

Wood. ER.. Powers, J.H., Cline, J.H., and Hammond, CE., * On Developing and Flight
Testing a Higher Harmonic Control System. ~ AHS Journal . Vo!. 30, No. 1, January 1985,
pp 3-20.

., “IMSL Library: Reference Manual, " IMSL Inc., Houston. Texas, 1980.

_““MACSYMA: Reference Manual, ™ Symbolics Inc., June 1986.

207



-ARTICULATED ROTOR-

Blade Attachment

Lag Damper
Pitch Homn

Blade Attachment
Pitch Bearing

Pitch Hom

Figure 1: Schematics of typical articulated, hingeless and bearingless rotors
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OFFSET POINT

Figure 2: Offset-hinged spring restrained blade model incorporating a partial span trail-
ing edge flap
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Figure 3. Fully elastic blade model incorporating a partial span trailing edge flap
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Figure 4: Schematic of a four-bladed helicopter
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Figure 5: Schematic of helicopter in level forward flight
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Figure 12: Schematic showing orientation of tangential and perpendicular air velocities
and aerodynamic loads
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Flap-Lag Stability Boundaries in Hover
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Figure 13: Flap-lag stability boundaries in hover for the offset-hinged spring restrained
blade model
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Flap-Lag Response Verification
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Figure 14: Coupled flap-lag response solution obtained using the offset-hinged spring
restrained blade model
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Trim Verification
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Figure 15: Trim results obtained using the offset-hinged spring restrained blade model,
inflow and rotor angle of attack
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Figure 16: Trim results obtained using the offset-hinged spring restrained blade model,
pitch inputs
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Flap-Lag-Torsion Response Verification
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Figure 17. Coupled flap-lag-torsional response solution obtained using the offset-hinged
spring restrained blade model
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Lead-Lag Damping in Forward Flight
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Figure 18: Coupled flap-lag-torsion lead-lag damping in forward flight obtained using the
offset-hinged spring restrained blade model
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Figure 19: Trim results obtained using the fully elastic blade model, inflow and rotor an-
gle of attack
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Figure 20: Trim results obtained using the fully elastic blade model, pitch setting
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Tip Response Verification
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Figure 21: Blade tip response obtained using the fully elastic blade model
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Stability in Forward Flight
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Figure 22: Lead-lag damping in forward flight, soft-in-plane biade

229



Stability in Forward Flight
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Figure 23: Flap damping in forward flight, soft-in-plane blade
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Stability in Forward Flight
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Figure 24: Flap and torsional damping in forward flight, soft-in-plane blade
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Stability in Forward Flight
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Figure 25: Lead-lag damping in forward flight, stiff-in-plane blade
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Stability in Forward Flight
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Figure 26: Fiap damping in forward flight, stiff-in-plane blade
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Stability in Forward Flight
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234



Vibratory Hub Loads
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Figure 28: 4/rev longitudinal hub shear and rolling moment, soft-in-plane blade
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Vibratory Hub Loads
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Figure 29: 4/rev lateral hub shear and pitching moment, soft-in-plane blade
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Vibratory Hub Loads
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Figure 30: 4/rev vertical hub shear and yawing moment, soft-in-plane blade
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Vibratory Hub Loads
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Figure 31. 4/rev longitudinal hub shear and rolling moment, stiff-in-plane blade
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Figure 32: 4/rev fateral hub shear and pitching moment. stiff-in-plane blade
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Vibratory Hub Loads
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Figure 33: 4/rev vertical hub shear and yawing moment, stiff-in-plane blade
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Baseline Value of the Cost Functional
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Figure 34: Baseline value of the quadratic cost functional for the spring restrained blade
model
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Effectiveness of Various Input Frequency Combinations
in Reducing the 4/rev Hub Loads
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Figure 35: Effectiveness of various input frequency combinations in reducing the 4/rev
hub loads using a control flap
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Effect of Various Input Frequency Combinations
on the 8/rev Vibration Levels

Input Combination:

0.90- shears
Il No Input
30.80 - ]
g ' F & 1 3.4.5/rev
L} 0.70- [ 2.3.4.5/rev
~ i o
o 0.60 [ [ £ 2,3,4,5,6/rev
Re AN [-:
= 0.50~
o
£ 0.40 ]
<
. 0.30-

E - [ -
" 0.20 2 : B moments
c 3 - 2 : _
= 010+ 2 7n I 1 F B

0.00——ﬂji dEimg b s B 2 B 5

long. lateral vertical rolling pitching yawing

8/rev Hub Loads

Figure 36: Effect of various input frequency combinations on the 8/rev hub loads for the
control flap
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Effectiveness of Various Input Frequency Combinations
in Reducing the 4/rev Hub Loads
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Figure 37: Eifectiveness of various input frequency combinations in reducing the 4/rev
hub loads using conventional IBC
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Effect of Various Input Frequency Combinations
on the 8/rev Vibration Levels
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Figure 38: Effect of various input frequency combinations on the 8/rev hub loads for con-
ventional IBC
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Figure 39 iteration history of the local controller: cost functional
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Local Controller Iteration History
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Figure 40: Iteration history of the local controller: 4/rev longitudinal shear and rolling
moment
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Local Controller Iteration History
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Figure 41: lteration history of the local controller: 4/rev lateral shear and pitching moment
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Local Controller Iteration History
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Figure 42: lteration history of the local controller: 4/rev vertical shear and yawing mo-
ment
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Controlled Value of the Cost Functional
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Figure 43: Controlled values of the quadratic cost functional for the spring restrained
blade model
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Baseline Value of the 4/rev Vertical Hub Shear
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Figure 44: Baseline value of the 4/rev vertical hub shear for the spring restrained blade
model
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Controlled Value of the 4/rev Vertical Hub Shear

&
(@]
J

— conventional IBC

- control flap

N
T

20-

Percent of Baseline Value
wn

1 T

0 1 1 | T T T
2.40 2.80 3.20 3.60 4.00 4.40 4.80
Fundamental Rotating Torsional Frequency (/rev)

T

Figure 45: Controlled value of the 4/rev vertical hub shear for the spring restrained blade
model
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Actively Controlled Flap
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Figure 46. Simultaneous reduction of 4/rev hub shears and hub moments using a control
flap, torsionally soft blade
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Figure 47 Simultaneous reduction of 4/rev hub shears and moments using a control flap,
torsionally stiff blade
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Figure 48: Simultaneous reduction of 4/rev hub shears and moments using conventional
IBC, torsionally soft blade
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Figure 49: Simultaneous reduction of 4/rev hub shears and moments using conventional
IBC, torsionally stiff blade
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Control Power Requirements
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Figure 50: Control power requirements for the offset-hinged spring restrained blade mo-
del
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Control Input Requirements
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Figure 51: Control input for vibration reduction for the spring restrained blade model
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Effect of Xlc on Uncontrolled Vibration Levels
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Figure 52: Effect of a mass unbalanced trailing edge fiap on the uncontrolled vibration
levels
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Effect of Xic on Controlled Cost Functional
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Figure 53: Effect of a mass unbalanced trailing edge flap on the controlled vibration levels
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Effect of Xic on Control Input Amplitude
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Figure 54: Effect of a mass unbalanced trailing edge flap on the control input amplitudes
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Effect of Xic on Power Requirements
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Figure 55: Effect of a mass unbalanced trailing edge flap on the control power require-
ments

262



Baseline Value of the Cost Functional
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Figure 56 Uncontrolled value of the quadratic cost functional
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Controlled Cost Functional
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Figure 57: Minimized value of the quadratic cost functional
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Reduction of the 4/rev Hub Shears and Moments
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Figure 58:  Simultaneous reduction of the 4/rev hub shears and moments, wyq = 2.5/rev
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Reduction of the 4/rev Hub Shears and Moments
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Figure 53: Simultaneous reduction of the 4/rev hub shears and moments, wyy = 3/rev
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Reduction of the 4/rev Hub Shears and Moments
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Figure 60: Simuitaneous reduction of the 4/rev hub shears and moments, wrq = 3.5/rev
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Reduction of the 4/rev Hub Shears and Moments
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Figure 61: Simuitaneous reduction of the 4/rev hub shears and moments, Wty = 4/rev
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Reduction of the 4/rev Hub Shears and Moments
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Figure 62: Simultaneous reduction of the 4/rev hub shears and moments, Wty = 45/rev
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Reduction of the 4/rev Hub Shears and Moments
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Figure 63: Simultaneous reduction of the 4/rev hub shears and moments, @y = S5/rev
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Control Input Requirements
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Figure 64 Control input requirements for conventional IBC and the actively controlled
flap
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Control Power Requirements
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Figure 65 Power Requirements
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Figure 66: Trim results: inflow and rotor angle of attack
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Figure 67: Trim results: pitch inputs
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Tip Response (E-02)
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Figure 70: 4/rev lateral hub shear and pitching moment
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Figure 71: 4/rev vertical hub shear and yawing moment
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Baseline Value of the Cost Functional
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Figure 72:  Uncontrolled value of the quadratic cost functional
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Figure 73: Minimized value of the quadratic cost functional

280



-—
iy

— spring restrained

—
o
|

.-+« flexible LT .

¢4}
1

~"control flap

Maximum Input Angle (deg)

conventional IBC

PP AdAAS

0 T | T T 1 T 1

T T I T I
2.40 2.80 3.20 3.60 4.00 4.40 4.80
Fundamental Rotating Torsional Frequency (/rev)

Figure 74:  Control input requirements for conventional IBC and the actively controlled
flap
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Baseline Value of the Cost Functional
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Figure 76. Effect of the spanwise location of the control flap on the uncontrolied value of
the cost functional
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Figure 81: Effect of hinge moment correction on the control input requirements of the
control flap
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Control Power Requirements
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Figure 82: Effect of hinge moment correction on the power requirements of the control
flap

289



Baseline Value of the Cost Functional

......
e
aen®
.o

. e
een
ey

.....
e

.
.

et
ae

-+ incompressible

-«- compressible

S x - conventional blade
— 0.40 o - w/ control flap
0.204
0.00 T T T T

T T T T T T T T 1
2.40 2.80 3.20 3.60 4.00 4.40 4.80

Fundamental Rotating Torsional Frequency (/rev)
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Control Power Requirements
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Deviation in Tip Displacements
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Figure 87. Deviation of tip displacements from steady state values at the end of one rotor
revolution, converged solution
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Deviation in Tip Velocities
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Figure 88: Deviation of tip velocities from steady state values at the end of one rotor re-
volution, converged solution
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Integration Steps per Revolution
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Tip Response in Forward Flight
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Figure 91: Verification of the steady state tip response solution
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Deviation in Tip Displacements
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Figure 92: Deviation of tip displacements at the end of each revolution from the steady
state values
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Verification of Trim
Hub Shears
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Figure 98: Convergence of trim solution: tongitudinal and vertical forces
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Verification of Trim
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4/rev Hub Loads
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Figure 100: Convergence of vibratory hub loads to steady state: 4/rev longitudinal hub
shear and rolling moment
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Figure 102: Convergence of vibratory hub loads to steady state: 4/rev vertical hub shear
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Controlled Vibratory Hub Loads
Open-Loop Control
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Figure 103: Time history of controlied vibration levels: 4/rev longitudinal hub shear and
rolling moment
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Figure 104: Time history of controlled vibration levels: 4/rev lateral hub shear and
pitching moment
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Controlled Vibratory Hub Loads
Open-Loop Control
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Appendix A

MODIFICATION OF THE QUASISTEADY AERODYNAMIC LOADS

The expressions used in this study to approximate the aerodynamic forces and mo-
ments per unit span on a rotor blade with a trailing edge flap are derived in this Appendix.
The aerodynamic loads are based on a modification of Theodorsen’s classical unsteady
aerodynamic theory[52] to include the rotary-wing aerodynamic effects of time varying
oncoming flow and variable inflow.

In the derivation of his unsteady aerodynamic theory, Theodorsen[52] includes the ef-
fects of a trailing edge flap with an arbitrary deflection angle. Thus the total lift and mo-
ment per unit span for a wing-aileron combination, together with the hinge moment per unit
span about the flap hinge, are provided in Ref. 52. Theodorsen’s theory is not suitable for
rotor blades undergoing coupled flap-lag-torsional motion, and which are usually operating
at constant or time varying geometric pitch angles[11,14]. Modifications to Theodorsen’s
theory to account for time varying oncoming flow and constant angle of pitch have been
derived by Greenberg{18]. The adaptation of Greenberg’s theory to rotary-wing problems
and the correction for time varying inflow has been first derived in Ref. 15 Unfortunately,
these maodifications do not include the effects of a control flap. Thus Theodorsen’s clas-

sical theory will serve as the point of departure in the present derivation.

A1 THEODORSEN UNSTEADY AERODYNAMICS

Theodorsen’s classical theory formulates the solution for the two-dimensional force and
moment on a thin airfoil-aileron combination undergoing simple harmonic pitching and
plunging motions in a uniform, steady flow field. The airfoil moves in vertical translation
h(t} and rotates through the angle x(t) about an axis located a distance X = ba behind the
midpoint of the total chord of the airfoil-aileron combination, and the (aerodynamically un-

balanced) trailing edge flap rotates about an axis at x = bc through the angle &(t) relative
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to the airfoil chordline, as shown in Fig. A.1. The plunging motion h(t) is taken as positive
down, and the pitching motions of the airfoil and control flap are positive trailing edge down
(see Fig. A1).

Theodorsen’s classical theory formulates the solution for Laplace’s equation
Vi =0

in terms of the disturbance velocity potential ¢ subject to the two dimensional boundary
condition that the airfoil chordline is a streamline of the flow, and subject to Kutta’s hy-
pothesis of finite, continuous velocities and pressures at the trailing edge.

Theodorsen separates the solution of the problem into two parts. First, an appropriate
distribution of sources and sinks is placed just above and below the airfoil chordline such
that the two dimensional boundary condition that the chordline is a streamline of the flow
is satisfied. The disturbance velocity potential due to the sources and sinks represents the
noncirculatory portion of the flow and is used to determine the noncirculatory aerodynamic
loads acting on the airfoil. A pattern of vortices is then superimposed on the chordiine,
with counter-vortices along the wake to infinity, such that the Kutta condition at the trailing
edge is satisfied. The disturbance velocity potential due to the pattern of vortices repres-
ents the circulatory portion of the flow and is used to determine the circulatory aerodyna-
mic loads acting on the airfoil. Small disturbances are assumed, resulting in a linear

theory.

A.2 INCLUSION OF ROTARY-WING AERODYNAMIC EFFECTS

Theodorsen’s classical theory is modified in this section to include the effects of a time
varying free stream velocity and variable inflow for the purposes of approximating the
aerodynamic forces and moments on a rotor blade. The effect of time varying oncoming
flow is accounted for by retaining all time derivatives of the free stream velocity U(t), which
Theodorsen equates to zero. The effect of a time varying inflow velocity ¥(t), shown in Fig.

A.1. is included using the principle of superposition, which is valid in the context of a linear
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aerodynamic theory. The effect of a constant component of the total pitch «(t) is not ex-
plicitly provided for, since this can be handled by steady-flow theory and the result after-
wards superimposed on the solution.

The modifications to the noncirculatory and circulatory aerodynamic loads are dis-

cussed separately in the following two sections.

A.21 Noncirculatory Lift and Moment
From Ref. 52, for the noncirculatory portion of the flow, the lift (positive up), pitching
moment (clockwise positive), and control flap hinge moment (clockwise positive), respec-

tively, for the entire wing-aileron system are obtained by evaluating the following integrals:

+1,
Lne = 2pbf ¢ dx (A1)
—1
S+ +1
Mine = —2pbf d(x—c)dx + 2pUbJ ¢ dx — b(c — a) Lyc (A.2)
1, 1
Mone = —2pbf d(x—c)dx + 2pUbf ¢ dx (A3)
Cc C

where x = X/b is the nondimensional distance from the midpoint of the total chord of the
airfoil-control flap combination. Also, a=ba/b and ¢ =bc/b.

The quantity ¢(x.t) in Egs. (A.1) — (A.3) is the velocity potential at a point x on the airfoil
due to an appropriate distribution of sources and sinks just above and below the airfoil
chord such that the two-dimensional boundary condition that the airfoil boundary is a
streamline of the flow is satisfied. The velocity potentials due to position and velocity of
the individual components of the wing-aileron system which together satisfy this

condition[52] are:

by = Uzbyv'1—x2
¢y, = hbv 1 — x°
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b, = dbz(%x —aW1—x2

b5 = %U(Sb[\/ 1—% cos 'c — (x—c)logN]

—éb [v1 + (x——2c)\!1—x2 cos”'c

¢; =

— (x— c)? log N} (A.4)
where
N = 1—cx—\/1—x2\/1——_c7

X—C
Due to the presence of inflow, the resultant air flow sensed at x=ba in the plunging

direction is (h —v). The velocity potential due to inflow, which can be obtained by substi-

tuting ( — v) for h into the velocity potential ¢ in Eqs. (A.4), is given by

b, = —vbV1—x (A.5)

The total velocity potential which satisfies the two-dimensional boundary condition, in-
cluding the effect of variable inflow, is obtained by summing the individual contributions,

since for a linear problem the superposition principle applies, i.e.
b= ¢y + S+ b+ G+ b5 + @ (A.6)

The noncirculatory lift and moments are obtained by substituting Egs. (A.4) — (A.6) into
Egs. (A.1) — (A.3) and performing the required integrations. Before doing this however, it
is convenient to interchange the integration and differentiation operations in Egs.
(A1)~ (A.3) , which yields the following equivalent expressions for the uncirculatory lift,

pitching moment, and hinge moment:

d. [
c = 2pb F[ $dx] (A7)
-1
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+1 +1
Mync = — zpbzdit[f d(x — c)dx] + 2pUbj $dx
-1 -1
— b(c— a)Lye (A.8)
1 1
Mpne = — 2pb %[f P(x — c)dx] + 2pUbf ddx (A.9)

When Egs. (A.4) — (A.6) are substituted into Egs. (A7)~ (A.9), various integrals involving
the velocity potentials in Eq. (A.6) arise, and must be evaluated. These integrals are eval-
uated in Ref. 52 as follows:

+1 b
f P, dx = —Uan
1

+1 b :

+1

pedx = — bl
e 2
+1 b
f tj)éd)( = - —U5T4
B 2
+1 b2 .
f ¢5dx = — —2—'6T1
-1
+1 b
P x—cldx = — ?U:xcrr

i

+1
f @ (x — c)dx
-1

b .
- _hCI
2 hid

+1 )
f @ (x = c)dx = 4b“Ty,m
-1

+1 b
f ¢)0‘(X - C)dX - ?U(STB
—1

317



+1 b2 R
J ¢5(X - C)dx = - —2—5.’-7
-1

k b
c 2
]
b .
dx = — —hT
J;¢h X 2 4
! 2
f ¢, dx = ab’Ty
[
! b
f bsdx = ———USTs
c 1
1 b2 -
. = — 2 5T
J;: ¢5dx o ) 2
! b
J P (x—c)dx = — —UxT,
c 2
1 b -
f Pix—c)dx = — —-hT,
¢ 2
! 2
[ $a(x — c)dx = ab"Tyy
Cc
! b
(% — = — 2 Us
L ¢ 5(x — c)dx o UoT,
1 b? .
(x —c)dx = — —OT A 10
[ 0= 0x = = 5375 (A10)

The quantities denoted by T with a numerical subscript, used in the above and subsequent
expressions, represent constants involving the nondimensional airfoil dimensions a and
c. These constants, which are taken from Ref. 52, are defined at the end of this Appendix.

Additional integrals, not represented in Eqgs. (A.10), arise which involve the velocity po-

tential ¢, , which accounts for the presence of inflow. These integrals can be evaluated
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by substituting ( - v) for h into the integrals in Eq. (A.10) involving the velocity potential é;

due to the plunging velocity. Making the substitutions yields:

+1
) b
padx = — —yx

K2 g

+1 b
f d(x~c)dx = —2ven
4 2

1
f bodx = %vu

C

;
f ¢ (x— c)dx = %vﬂ (A.11)

C

Using Egs. (A.6) through (A.11), the following expressions for the noncirculatory lift,

pitching moment and hinge moment are obtained:

Lne = 2pb[%(Ux+ Uy + %h«r _ %m — 'oib2£2i

. , 2
- %(u5+ us)T, — —bQ_&n] (A.12)
Mch = - 2pb2[~l2)_(Ux+ Ux)er — %Hcrr + %L’-cn

2 b, b?
+ 4b°Tym — SHUS + US)Tg — 50771

b Ugn + Dpr — By sp2ra b
+ 2pUb[?Um + 5 hr A ab 5 5 UsT,
b? ;
- »75T1] — b(c—~ a)lye (A.13)
Mone = — 2pb2[—%(Ux+ U)T, — %ﬁn + %m
L2 b - . b2 .
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Note that in the above expressions, the time derivatives of the free stream velocity has not
been set to zero, as was done in Ref. 52.

Collecting like terms, Egs. (A.12)— (A.14) become

Lne = %p(Zn)bz[ch + Ui + h — v — &ba)
. T LT
— U8 + US) % — 20611 (A.15)
2n 2n
1 2,02, (A4 am2y T4 2
Myne = 210(27t)b{Uot (8+a)ba 22nU5
STy =Ty (e - a)T(EDUS + 21, + (c - a)T 0%
+ (baXh—v) + U(h—v) + (ba)Ux
+ 5[Tg + (e~ a)T,)(20)03) (A.16)
Mnne = — pb’[UaT, — (2Tg+ Ty)bUx + 2T,3b%%
T LT . .
2 5 2 3 N
%25 — 20%% + T v) — bT,0x
— bTy(h — )~ 2b5205] (A7)

In the expression for the noncirculatory pitching moment, the relation

1 1
T14 = —1‘6—+—2—8C

taken from Egs. (A.31), has been used to simplify the expression.
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A.2.2 Circulatory Lift and Moment
From Ref. 52 the circulatory lift (positive up), pitching moment (clockwise positive), and

control flap hinge moment, respectively, for the whole wing-aileron system[52] are

Le = 27pUbQC(K) (A.18)
Myc = 21erbQ[(ba+%)O(k)——l2)—] (A.19)
Myc = — pUb2Q[T,,C(k) — T,] (A.20)

where C(k) is Theodorsen’s lift deficiency function[52] which depends on the reduced flut-
ter frequency k= wb/U.

The parameter Q in Eqs. (A.18) — (A.20) is defined in Ref. 52 as

_ Y b - Tio Ty

This quantity appears in the expression for the total circulation about the wing-aileron
system calculated by enforcing the Kutta condition at the trailing edge. Superimposing the

effect of inflow, the parameter Q becomes

. T T .
Q= Ux+ (h=—v) + (2 —ba)y + —0Us + b1t (A.22)
2 T 2n

The substitution Eq. (A.22) into Egs. (A.18) — (A.20) yields expressions for the circulatory
lift, pitching moment and hinge moment, respectively, which include the effects of time-

dependent free stream velocity and variable inflow.

A.3 CHANGE OF NOTATION

In modifying Theodorsen’s unsteady aerodynamic theory, the original airfoil notation
used in Ref. 52 was adopted for convenience. However, for the rotary-wing application it
is necessary to modify this notation. The relationship between the notation of Ref. 52 and

the notation used in this study is given below:
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b = —%‘(Cb+ CCS)

I

ba = Xp— —}{cb + 2c.s)

bc = —;—(cb— Ccs) (A.23)

The second of Egs. (A.23) implies the assumption that the aerodynamic center of the blade
cross-section is located at a distance of 1/4 of the blade chord from the leading edge.
For rotary-wing applications, the pitch angle x(t) is frequently[38,45,50.53] interpreted

as the total pitch angle of the blade

The same interpretation is made in this study.

The modified aerodynamic loads derived in this Appendix are expressed below in terms
of the parameters of this study by using Egs. (A.23) and (A.24). and substituting them into
Egs. (A.15)—(A.22). Furthermore, the free stream velocity U is replaced by Uy, and the
quantity (v — h) is replaced by Up, where U and Up represent, respectively, the the com-
ponents of the total air velocity sensed by the blade approximately parallel and normal to
the hub plane. Finally, the flat plate lift curve slope of 27 is replaced by the incompressible
lift curve slope a, and p, is used to denote the air density.

Introducing these substitutions, the final expressions for the noncirculatory and circu-

latory lift, pitching moment and hinge moment used in this study are

Lne = %p‘\ao(cb + P (Ur(Ba + ¢) + Ulg + $)
— [Xa— Hep + 26906 + $) = U
. T LT
— 2AUgd + Udyg — (Cp+ CosPgm) (A.25)
(o] o]

1 20112
Mync = 5Pa2(Co + Ces) {UNOg + ¢) — UqUp
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=1

1 s . e .
= 32(% ¥ el 06 + )~ DX~ 140y + 2¢0) 165 + §)
+ [Xa - ‘41—(% + 2cc))[Ur(fg + ¢) — Up]
T T .
- za_zu%s - —a;—(cb + cg)Urd
Tg 3 Ty p ;
+ [—a—(cb + CCS)+ (?CD - 2XA}E_](UT5 + UTé)
¢ (¢]
1 T; 3 Ty
+ ?(Cb‘f' CCS)[T(CD + CCS) + (7Cb — 2XA)’T]6}
&) (o]
1 2,0,2 1 2.5 4
= - 'ZpA(Cb + CCS) {UTT4(BG + ¢) + ?T13(Cb + CCS) (eG + ¢)
— 242Tg + TyXey + eyl + )

n %(cb + Ce)T3[Up — Ur(8g + )] — U7U,T,

T3
(o]

T y T, .
2 1 2
F2UT20 ~ Top + oS — (cp + CesharUrd)

2 pAao(cb + Ccs)UT{UT(OG + ¢)* UP

+ LG + 3ecs) = XaJ0g + )

T 1 Tqq .
+ 23—’:UT5 + {2, + BCCS)—a1O—15}C(k)

1 N
Myc = 5PA3(Cp + Ce U {Ur(f + ¢) - Up

A . T
+ [4Cn + 3ees) = X N6 + 6) + 252Uy

T.. .
+H2ey + e 56} (X - %ccs )C(k) — %{cb + ceo)]
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1
Mnc = — —4_pA(Cb + Ccs)QUT{UT(BG +6)-Up

+ [3{cy + 3ccs) ~ Xakbo + )

+2

T1o 1 Ti1 5
ag U + -4—(2cb + SCCS)—gé}[TQC(k) - T4] (A.30)

A.4 DEFINITION OF COEFFICIENTS USED BY THEODORSEN

The various parameters denoted by T with a numerical subscript appearing in the ex-
pressions for the aerodynamic loads represent constants which arise in the integration of
the velocity potentials along the airfoil chord. These constants are defined by

Theodorsen[52] as follows:

1./ 1

T, = ——3—\11——02(2‘*'02)+CC°5—°

Ty=Tg = c(1—c2)—w1—c2(1+c2)cos"1c+ c(cos—1<3)2

Ty = —(%+ c2)( cos—1c)2+—;:—cxl1— c? cos_1c(7+ 2c2)
_ —18{1 — c?Y5c + 4)

Ty = _cos e+ V1=

Ty = _(1_c2)_(c05"1c)2+2cv1— c? cos”'c

_ 1 2 -1 1./ 2 2

T, = —(_8—+c)cos c+?cx‘1—c (7 + 2c%)

Tg = —-:13_\'1—c2 (2cz+1)+ccos—1c

To = AN 1—-¢* ) +aT

9—3[3\ - ¢ ) +aT,]
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T14

il

i

V1= ¢? +cos ¢

cos_1c(1 - 2c)+V1-¢? (2-c¢)

\/1 —c? (2+c)— cos"1c(2c +1)

Fl-Tr—c-ar]

1 1
6 "2

(A.31)

where a and c are the nondimensional airfoil parameters used by Theodorsen which have

already been defined. From Egs. (A.23) these can be defined in terms of the airfoil char-

acteristics used in this study:

bc _ C ~Ces

b Cp+ Ccq

ba _ 2XA Cb + 2CCS
(cy + cg) 2(c, + cg)

325



UO
b —] .
_) a(t) h(t)
b N, T — -
.;’_l \ .
bc
(a)
Ut ? l ¥(t)
|~ b— |~ b———-! .

j a(t) h(t)

ba N\C T\
)
bc
(b)

Figure A.1: (a) Airfoil-aileron combination undergoing plunging and pitching motions in a

uniform stream. (b) Airfoil-flap combination with time varying free stream and inflow.
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Appendix B

EXPLICIT FORMULATION USING A SYMBOLIC MANIPULATION PROGRAM

The main obstacle encountered in the explicit formulation of the equations of of motion
is the rapid proliferation of the number of terms in the explicit expressions as each suc-
ceeding mathematical operation required in the derivation is performed. Keeping track of
each of these terms can be tedious and time-consuming, even when an ordering scheme,
which necessarily accompanies explicit formulations, is employed to neglect the higher
order terms. Fortunately. substantial increases in ~omputer power during the last decade,
as represented by high computational speeds and the availability of large core memory
at low cost, have enabled the relegation of the tedious algebraic tasks to the computer.
Many symbolic manipulation programs exist which can be used to derive the equations of
motion of the blade in explicit form. These equations can then be converted intoc FORTRAN
code for inclusion into a computer analysis code. Since the algebraic tasks are relegated
to a computer, it is fairly easy to retain as many terms as desired. In addition, the
equations can easily be rederived by the computer to reflect any changes in the aeroelastic
model.

Symbolic manipulation programs enlist an arsenal of functions and subroutines which,
when invoked by the appropriate command, perform specific mathematical operations on
indicated symbolic expressions to yield the desired result. The user generally has the
option of entering the commands interactively or in a batch format. For lengthy derivations
it is preferable to save the specific sequence of commands into a file and execute them in
batch format. This facilitates the review of the specific sequence of commands for cor-
rectness both before and after execution and allows the user to make minor changes in the

derivation. if desired.
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B.1 ORDERING SCHEME

Explicit formulations require the employment of an ordering scheme to neglect the
higher order terms, even when the tedious algebraic tasks are relegated to a computer.
Unless a systematic approach is employed neglect higher order terms, the length of the
expressions can become too large, requiring vast amounts of computer time and memory
to perform the required symbolic manipulations, and may ultimately lead to a system
crash, if all available memory is exhausted. Thus the ordering scheme is convenient for
reducing the size of the expressions. By judiciously assigning appropriate orders of mag-
nitude to the various terms encountered in the expressions, all terms which can be con-
sidered negligible are eliminated, thus saving valuable computer time and memory.

The ordering scheme used in this study is described in Chapter 2. The basis of the
ordering scheme is a small dimensionless parameter ¢ which represents typical blade
slopes due to elastic deformation. It is known for helicopter blades that ¢ is in the range
01<g<02 . The ordering scheme used in this study is based on the assumption that
terms of the order of O(c2) are neglected in comparison with unity.

Orders of magnitude can only be assigned to nondimensional quantities. The dimen-
sional parameters R, M, and € , which denote the rotor radius, blade mass, and rotor
speed, respectively, are used to express all dimensional parameters appearing in the
equations in nondimensional form. Orders of magnitude can then assigned by selecting,
based on experience, a typical value for the particutar parameter under consideration.

Caution must be exercised when implementing an ordering scheme so as to avoid ne-
glecting potentially important terms. This is best accomplished by careful insight into the
problem when establishing a cut-off level for the ordering scheme at each stage of the
derivation. Here the cut-off level designates the order of magnitude at which all terms of
higher order are neglected. Until the final stages of the derivation, the primary motivatling
factor in establishing the cut-off level is the desire to keep the expressions to a manage-
able size while retaining as many terms as is practical; it is only in the final stages that the
ordering scheme should be strictly enforced. If the ordering scheme is strictly enforced

throughout the entire derivation then important terms may be erroneously neglected. This
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is due to the fact that the relative orders of magnitude of the various terms can change
when certain mathematical operations, such as integration or differentiation, are per-
formed, resulting in the loss of important terms at critical stages of the derivation if the
ordering scheme is enforced too strictly. Therefore it is important to relax the implemen-

tation of the ordering scheme until the final stages of the the derivation.

B.2 SYMBOLIC MANIPULATION METHODOLOGY

The major steps in the formulation of a set of explicit equations of motion using a
symbolic manipulation program are listed briefly below. These steps are expanded upon
tater for the particular symbolic manipulation program MACSYMA, which has been used
extensively in this study.

(1) Definitions: All functional dependences and orders of magnitude of the various pa-
rameters must be defined. In addition, all user defined functions and expressions which
would be convenient to have at hand must be defined. Finally the starting cut-off level for
the ordering scheme is established.

{2) Algebraic manipulations and mathematical operations: Predefined quantities and

expressions are combined and manipulated using the appropriate commands and user
defined functions to develop the desired result.

(3) Expansion and conversion to FORTRAN code: The explicit expressions are ex-

panded into a sum of product terms involving the various parameters of the problem. At
this stage the ordering scheme is strictly enforced. The expressions are then converted

to FORTRAN code in preparation for incorporation into the analysis code.
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B.3 SYMBOLIC MANIPULATION USING MACSYMA

The general-purpose computer algebra system MACSYMA is used throughout this
study to develop explicit expressions for the equations of motion of an isolated rotor blade.
The program MACSYMA (version 420) is installed on a Symbolics 3650 dedicated LISP
machine running Genera 7.0. The Symbolics machine is networked via Ethernet to a Sun
3/280 computer on which all of the numerical computations are performed.

A detailed description of the syntax and usage of the various MACSYMA commands
used to develop the explicit equations of motion are beyond the scope of this study, and
can be found in Ref. 59. However, a brief description of the usage of the various MACSYMA
commands used are given when appropriate. In this study, the sequence of MACSYMA
commands used to derive the expressions are saved in a file and executed in batch format.
Batch files are executed using the MACSYMA command BATCH( filename.mac”) where fi-
lename.mac represents the name of the batch file containing the MACSYMA commands.
All MACSYMA commands will be written in BOLD capitals, and the arguments will be
written in lower case italic.

The basic steps required in the formulation of explicit equations using symbolic ma-

nipulation are discussed below.

B.3.1 Definitions
Before proceeding with the derivation of the equation of motion, the following definitions
must be made:

(1) All functional dependencies of the various parameters used in the study must be
defined using the DEPENDS(funlist, varlist) command, where the variables in funlist are
declared to depend on varlist. If the functional dependence of a variable is not established
beforehand. then derivatives of the variable using the DIFF(exp, v, n) command, which
evaluates the derivative of exp with respect to v n times, will be equated to zero.

(2) All orders of magnitude of the parameters used in the study must be defined using

the RATWEIGHT(var, w) command, which assigns a weight of w to var. The value of w re-
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presents the value of the exponent of ¢ for the given parameter according to the ordering
scheme.
(3) All user defined functions must be defined using the := operator, i.e.
FunctionName(args) := body;
The user defined function used in this study is the CROSS{u, v) command which crosses

the vector u with the vector v. The CROSS(u, v) command is created as follows
CROSS(U,V): = MATRIX([U[2].V[3] — U(3].v[21].

[U[3)-V[1] — U[11V[3]],

(UC1]1.V[2] — U[2].v[1d):

{(4) All transformation matrices between the various coordinate systems must be de-
fined. These are defined using the MATRIX(row1,...,rowN) command, which defines a rec-
tangular matrix with the indicated rows. Since the transformation matrices represent
orthonormal transformations, the inverse transformations can be obtained using the
TRANSPOSE(matrix) command.

It is important to note that vectors are defined using the MATRIX(row/,...,rowN) com-
mand by defining each row as having only one element.

(5) Any quantities and expressions which would be convenient to have at hand should
be defined.

{6) Finally an initial cut-off level to the ordering scheme must be established using the
RATWTLVL:value command. This causes a product term to be set equal to zero if its

weight exceeds value.

B.3.2 Algebraic Manipulations and Mathematical Operations

Once all of the functional dependencies, orders of magnitude. user defined functions,
and convenient quantities and expressions have been defined, the expressions may be
manipulated using the various MACSYMA commands and operations available to the user.

The most important of these are listed below.
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Addition and subtraction are accomplished using the + and - signs, respectively, and
scalar multiplication and division are accomplished using the * and / symbols, respectively.
Matrix multiplication and vector inner products are performed by placing a period between
the two terms.

Substitutions are performed using either the SUBST(a, b, ¢) command or the RAT-
SUBST(a, b, ¢) command, where a is substituted for all occurrences of b in expression c.
The main difference between the two commands is that the RATSUBST{a, b, ¢) command
invokes the ordering scheme while the SUBST(a, b, ¢) command performs a purely syn-
tactic substitution.

The function RATCOEF(exp, var, n) can be used to obtain the coefficient of the ex-
pression var®*n in the expression exp. This command is useful when it is desired to de-
termine whether there are any occurrences of exp™™n in a given expression. If there are
no occurrences then the command returns a result of zero.

A given expression can be rationally expanded and simplified using the
RATEXPAND(exp) command. This command, and also the RATSUBST(a, b, c¢) and the
RATCOEF(exp, var, n) command, invoke the ordering scheme whereby all product terms
in the expression whose net weight is higher than the value set by the RATWTLVL:value

command are set to zero.

B.3.3 Expansion and Conversion to FORTRAN Code
Once the explicit expressions have been derived they must be pul into their final form and
then converted to FORTRAN expressions. The steps for doing this are listed below.

(1) First the final level of the ordering scheme must be established using the
RATWTLVL:value command.

(2) Next the expressions are rationally expanded and simplified using the
RATEXPAND(exp) command. This command also invokes the ordering scheme by neg-
lecting all higher order terms according to the level established by the RATWTLVL:value

command.

332



(3) Next all variable names which are not legal FORTRAN variable names are replaced
syntactically with legal ones using the SUBST(a, b, ¢) command.

{4) The expressions are then converted into FORTRAN assignment statements using the
FORTRAN(exp) command.

{5) Finally, the expressions are saved into a file using the WRITEFILE("filename for”)

command.
The FORTRAN expressions are then transferred to the Sun 3/280 via Ethernet and in-

corporated into the FORTRAN computer code.
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Appendix C

EXPLICIT EXPRESSIONS FOR THE ROOT LOADS ACTING ON THE OFFSET-HINGED
SPRING RESTRAINED BLADE MODEL

Explicit expressions for the force and moment at the blade root are developed in this
appendix for the offset-hinged spring restrained blade model. In addition, an explicit ex-
pression for the total moment about the control surface hinge, required to calculate the
power required to drive the control surface to implement control, is also derived.

General explicit expressions for the distributed loads acting on the blade and control
surface have been developed in Chapter 3 in terms of the three displacement quantities
u, v and w and the rotational quantity ¢. Explicit expressions for the distributed loads
acting on the blade and control surface for the offset-hinged spring restrained blade model
are obtained by substituting Eqgs. (4.3) and (4.4) into these general expressions. Once this
has been done the loads at the blade root are obtained by integrating the distributed loads
along the span of the blade and control surface. The substitutions and integrations are
performed symbolically using the symbolic manipulation program MACSYMA, as described
in Appendix B.

Before performing the integrations along the span it is convenient to decompose the
total geometric pitch angle into an x-dependent component and a time dependent compo-

nent as follows:

B = O(¥)+ Opt)

Basic trigonometric relations allow us to write:

cos(fg + ¢) = cos B cos(f,c + @) — sin By sin(Boc + ¢) (C.1a)
sin(Bg + ¢)=sin O cos(fpc + $)+ cos by sin(Bgc + @) (C.1b)
cos(Ag + ¢ + 8) = cos O cos(By. + ¢ + 8)—sin Oy sin(Bpc + ¢ + 0) (C.A1c)
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sin(f0g + ¢ + &) = sin Oy cos(8p. + ¢ + 8) + cos Ot sin(fc + ¢ + ) (C.1d)

These expansions are used in the integration of the distributed loads aiong the span of the

blade and the control flap.

C.1 INERTIAL ROOT LOADS

The inertial loads at the blade root are obtained by integrating the distributed inertial
loads developed in Chapter 3 along the span of the blade once they have been expressed
entirely in terms of the blade degrees of freedom. The inertial root loads are formulated

in the "2” system, in which the distributed inertial loads have been developed.

C.1.1 Blade Inertial Loads
For the offset-hinged spring restrained blade model the differential force at the blade

root due to the inertial loads acting on the blade is given by
dFip = Py dx

where 5,b represents the distributed inertial force acting on the blade, which can be ex-

pressed in the "2” system as

— A A A
Pio = Piox2 €x2 + Pioy2 €y2 + Pipzo €5

The x,, y, and Z, components of Elb for the spring restrained blade model are obtained
from the expressions developed in Chapter 3 by substituting Eqs. (4.3) and (4.4) into Egs.
(3.20).

The total force at the blade root is obtained by integrating the differential force along

the span of the blade
- Ly _.
o = [ “Poax (c2)
]

which can be expressed in the "2~ system as
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- A A A
Fio = Fioxz €x2 + Fiby2 €y2 + Finz2 €22

where
Floxa = LLb Pioxo 8X
= MQ%(xp + €) + 2MpxpQL + MpxoB (B — B2%)
+ Moxgl(C + 824 6 + ) = 32" + B0
— aMylyp SinBpc + ¢) + Zp cOS(Bpc + QO + 6) (C.3a)
Floyz = LLb Piby2 %
— Mg 2BB, + Mpxel(Q% = )+ IMx, QUCL + BB).
+ My[yp cos(Bpc + ¢) — 2o Sin(Bpc + ¢)[CAL2 + 2)
+(Boe+ &1 + 2B + 9XB + Bp)]
+ MLy Sin(pc + )+ 2p cos(Opc + ONOpc + &)
+20p — 200 + 6X] (C.3b)
Frozz = LL" Bioz2 dX
— Moxgl& + 82+ BB + B2)Bp — MoxoD
+ MYy CoS(Bg + ¢) — 25 5in(0pc + $)ILB + Bp)

+ 2B+ PL— (Bpe + 6]
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+ Mo[yp Sin(@pc + ¢) + 2, cos(0,c + $)1[(Bpc + )

— (Bpc + HXB + BX1 (C.3c)

In the above integrations over the blade span the following integrals involving products of

x-dependent quantities have been substituted directly into the expressions:

Ly
mydx = My (C.4a)
0
Ly
myx dx = M.x (C.4b)
b o%b
0
Lb
0
Lb
MpXjp sin O dx = Mpzp (C.4d)
0

where M, is the total mass of one rotor blade and the triad (Xb. ¥p. Zp) represent the coor-
dinates of the blade center of mass from the blade root.
For the offset-hinged spring restrained blade model the differential moment about the

blade root due to the inertial loads acting on the blade can be expressed as

- . A -
dMlb = (qlb + Xex4 X plb)dX

where a,b represents the distributed inertial moment acting on the spring restrained blade,

which can be expressed in the “2" system as

—_ A A A
Gio = Qiox2 ©x2 + Aiby2 €y2 + Aipz2 €22

The x,. y, and z, components of am for the spring restrained blade are obtained from the
general expressions developed in Chapter 3 by substituting Egs. (4.3) and (4.4) into Eqgs.
(3.23).

The total moment about the blade root is obtained by integrating the differential root

moment along the span of the blade
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- Ly R
Mp = (Qip + X€y4 X Pyp) dX
0

which can be expressed in the "2” system as
- A A A
Mip = Mg €x0 + Mipyo €y + Migzo €25

where

Ly Ly Ly

Mipxe = J;) Quoxz 9% + CJ.o X Pipzz dx — (B + ﬁ,D)J’0 X Pipy2 dX
Ly Ly Ly

Mipy2 = J- Qioyz X — J- X Pipzz dx + (B + ﬁp)j X Pipxg dX
) 0 0

Ly Ly Ly
Mibza = J. Qipz2 OX + _[ X Pipy2 dX — C_[ X Pipxa 4%
o 0 0

(C5)

(C.6a)

(C.6b)

(C.6¢)

Before performing the above integrations it is convenient to define the following inte-

grals:

Ly 2

mbx dX = lb

(4]

Ly
I My X X, €08 O dx = Ly,
0

Ly
J‘ mbxxlb Sin 9pt dx = |Zb
0

Ly
j (lug2 + Iwea) dx = Jy

0

Ly
J (IMB2 - lMB3) cos Bpt sin Gpl dx = lmbr23
0

Lh

2 . 2
J‘ “MB? cos 6pt+ IMB3 sin epl) dx = Imbr2
0
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(C.7b)

(C.7¢)

(C.7d)

(C.7¢)

(C.71)



Lb
") 2
’- (g2 SIN“Opt + gz cOs“Bp) dx = 14 (C.79)
Jo

Using the previous integral definitions along with Eqgs. (C.1) , allows us to evaluate the

following integrals over the blade span:

Lo .2 2
f [lmg2 Sin“(0g + ¢) + lyyg; cos (B5+ ¢)] dx

o

.2 2 .
= Imprz SINUBpc + @) + I3 C0S5(Opc + @) + lypros Sin 20, + ¢)

Ly 4
f (mg2 — Ima3) €os(g + ¢) sin(f5 + ¢) dx

0

= lmbr2a €05 28pc + @) + Uinpro — lmors) cos(fpc + ¢) sin(()pc + ¢)

oL
b[IMB2 0052(9(3 + @)+ lygs sin2(8G + ¢)] dx
0

= lnpr2 cos.2(9pc + @)+ lpes sin2(8DC + @)= lnproa SIN 2(6pc + ¢)

Making use of the above expressions, the following integrals appearing in Egs. (C.6) can

be evaluated as:

L e 0% = [y cos(Byc + ¢) = 1y sin(0pc + $EQ° = XB + B,
B+ BB+ BB,

+ [y Sin(Bpe + @) + 1 cos(Bg + NIE ~ (0Q)
= 2+ By + BB)]

— Jollpe + 6)

+ [moro = lmora) cos(GDC + ¢) 'sin((?pc + @)
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+ npro3 €08 2(0pc + $)IQUQ + 20) + 2ABpc + XB + Bp)]

+ 20 mpr2 €05 (Bpe + @) + Inora sin(0,. + ¢)

— Improa Sin 28 + $)IQL(Opc + $X — B]

+ Cleor2 SiN°(Bpc + 6) + lmpra €05°(Bpc + ¢)
+ Ior2s $in 2A0pc + $II2LB + LB + (B + BX QX + )]
ﬂ”q,byz dx = MQ%e[yp sin(0pc + ¢) + 2 cOs(Bpc + )]
— [lyp COS(Bpe + ¢) = I Sin(Bpc + GIIQ%B + Bp)+ BX
+ [lyp SIN(Bpc + ) + Iy COS(Bpc + IILAQ + 20)
— (@%,+ ) + €+ O+ BB+ 87— QN+ 7))

- Jb(bpc + (f)){

+ [Umor2 = 'mbra) €080 + @) sin(0,c + ¢)

+ Imbraa €05 20pc + $ICY = §) — 2Bpc + $)8)

+ Umbro cosz(()pc + @)+ lnpra sing(()pc + ¢)
— Inpr23 Sin 285 + GB — QB + Bp) — ABpc + SXQ + )]

Lb
J. Qipz dX = — Mb§22e[yb cos(bpc + ¢)— 2 sin(0,c + ¢)]
0

+ [lyp COS(0pe + @)~ lyp Sin(Bc + $)I[ — AQ + 2)+ (¢ - Q%

340

(C.8)

(C.9)



B0 = By + QN+ B = (0 + 4 B+ )
+ Clyo sin(Bpc + ¢) + 1, cos(Bpc + $))E ~ LQ2NB + B,)

— Jp(Boc + XB + B,)

+ [Umbr2 = Imora) cos(Gpc + ¢) sin(9pc + @)

+ Imbras €08 A0c + )I[B — 20, + SXQ + )]

~ [nor2 SI°(Bpc + ) + ooy cos’ (B, + ¢)
+ lmoras Sin A0 + $IILL + 2ABpc + )81 (C.10)
fo P X = Mox 2% + QAR + 28) + 1 — B
+ 1L+ 4 BB+ 51~ 0% + )
= 20y Sin(@pc + @) + Ly, €OS(Opc + §)JQAD gt ) (C.11)
fo i Proya 8% = 15(092° = &) + 21,QE¢ + BB + fB,)
+ [lyp €08(Bpc + ¢) — Loy sin(B, + ¢)ILQARQ + 2)
+ Bpc + &) + Q0pc + $XB + B,)]
+ [yo sin(pc + §) + 1, 080, + [0 + )
+ 208 - 200, + HX] (C.12)

Ly .. . . . .
| %Pz 06 = 1GE+ 4 B+ BB, - 16
0
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+ [lyb COS(Gpc + d’)— 'zb s'in(opc + ¢’)][C(B + ﬁp)— (bpc + ¢)]
+ [y SinBp + 8) + Loy c0S(Bpc + $)Bpc + ¢

— (B + OXB + BoX] (C.13)

The integral definitions represented by Egs. (C.4) and (C.7) have been used in evaluating
the previous integrals.
Substituting Egs. (C.8)— (C.13) into Eqgs. (C.6) yields the components of the moment

about the the blade root in the “2” system due to the inertial loads acting on the biade:
Mipxe = — IoBL — 150Q% = XB + Bo) + EC + & + BB + B7)
— 21,Q(L¢ + BB + BBLXB + Bp)
+ [y cOS(Bpe + ) — lyp sin(Bpc + $)I[ — B — (Ao + $X
— QUQ+ 2XB + Bp) = (Bpc + 6B + B)]
+ [y Sin(Bpe + @) + Iy c0s(Bc + G — (%) — 22 + BB, + BA)
+ (Do + VL = (B + BpXBpc + ) — 2QB + Bo)B
+ 200 + GXB + BpX ]

- Jb(épc + ¢’)

+ [(rmor2 = Impra) €os(8gc + @) sin(0, + ¢)

+ Imbras €08 2B + $)IQL(Q + 20) + A0,c + SXB + By)]

+ 2[mbr2 (:0'5,2(6pc + @)+ lnpra sinz((ﬁ’pc + ¢)
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= lmbr2a $in 205 + $)IQBp + X — B]

+ [lmpr2 sin2(9pc + @)+ biora c032(8pc + @)

+ Imor2s 5in 200 + $)I2B + LB + (B + B XQ% + )]

Migyo = MpxpQ2e(B + Bp) + MpQZely, $in(0pc + ¢) + 2, cos(Opc + $)]

+ 1ol 4 1R+ 2008 + o) = L+ £+ B+ %)~ a2+ 5B + B,

+ 168 = Q°BXB + Bo)By + 1CL +E2+ BB + 5OXB + B,)

~ Uyo cos(Opc + ) — 1, sin(Bc + $ILQAB + BLX + 2
~(Opc+ ¢)+ (B + BX]

+ Ly sin(Bpc + @) + 5 cOS(Bpc + $IILAQ + 2{) — (B + $)
= 2(0pc + GXB+ Bo) + (B + XB + B ]

- Jb(bpc + ‘/5)‘:

+ [(rmore = Tmora) cos(Bpc + ¢) sin(é’pc + ¢)

+ Imor2a €08 20y + IR — §) — 28, + $)B]

+ [lorz €05°(0pe + &) + e sin’(Bpc + ¢)

= Imbras Sin 200 + ¢ = QXB + B,) — 2B, + $XQ + )]

Mpso = — bebQ?e{ -~ Mb§22e[yb cos(Bpc + ¢)—z, sin(()pc + ¢)]

= 1ol + 20Q08 + BB ~ (B — Q3BBL — 1LEC + 2+ BB+ 3D
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+ 2% + )

T [y Cos(Bpe + §) — lpp Sin(Bpc + HIIE — LQ°X
+ (B + DY + Abpc + SXB + By)]

1 [y Sin(0pc + ¢) + o €OSBpc + SNLE — LQ°XB + Bp)
+ (B + )+ 208]

— Jp0pc + SXB + Bp)
+ [Umor2 — 'mora) €05(0pc + ¢)sin(fp + $)
+ 1pras €08 A0oc + $)IB — A0pc + $YQ + )]

— [mbr2 sinz(F)pc +¢)+ hnoe3 cos"?((?pc + @)

T lpras S0 A0 + O + 20pc + )] (C.14c)

C.1.2 Control Flap Inertial Loads
For the offset-hinged spring restrained blade model the differential force at the blade

root due to the inertial loads acting on the control surface can be expressed as
dF e = pc dx

where B,c represents the distributed inertial force acting on the control surface, which can

be expressed in the "2” system as

—_ A Al A
Pic = Picx2 €x2 T Picy2 €y2 T Picz2 €22
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The x,, y, and z, components of B,c for the spring restrained blade model are obtained
from the general expressions developed in Chapter 3 by substituting Egs. (4.3) and (4.4) into
Egs. (3.43).

The total force at the blade root is obtained by integrating the differential force along

the span of the control surface, i.e.

- xCS+ LCS_A
Fic = J. pic dx (C.195)
Xes

which can be expressed in the “2” system as
- A A A
Fie = Frexe €yt Flcy2 €y t+ Ficzo €22

where

XCS + LCS
FIc>(2 = Picxo dX
X

= M Q%% + ) + 2Mx

+ 2MQLyc Sin(fpc + ¢ + 8) + 2. cOs(Bpc + ¢ + 6)1ABpe + & + 5)

+ 2MQLy, sin(0pc + ¢) + 2y, cos(B + $) 10y + $) (C.16a)

xCS+ LCS
FIcy2 = J. Picy2 dx
X

= 2MX QBB + Mx (822 — ) + 2Mx Q(EC + BB)
= Mclyc cos(Opc + ¢ + 8) — z¢ sin(B,. + ¢ + 8)J[AQ + 2)
+ (Bpc + ¢ + 5 + 200, + 6 + XB + B,)]

= Mclycsin(0,c + ¢ + 8) + 2, cos(f,. + ¢ + 208
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+Bpe+ & +8)— 220, + ¢ + X ]

~ M[Yn €08(0pc + &) — 2z Sin(Bc + $)I[QAQ + 2)
+(Bpe + &) + 2B+ SXB + Bp)]

— M[yp Sin(Bpc + ) + 2y cOS(Bpc + $)1[2Q5

+ (B + )~ 220 + HX] (C.16b)

xCS + LCS
Ficzo = Picz2 dX
Xe

= — Mxf

+ M[ye co8(Bpc + & + 8) — z¢ Sin(Bpc + ¢ + &)L — BL
—(B+ Bk — 2BL + (Bpc + ¢ + )]

— My Sin(Opc + & + 8) + 2 coS(Bpc + ¢ + 6)[(Fpc + ¢ + 51
— @y + ¢+ OXB + BpX]

+ Mc[yh cos(Bpc + ¢) = 2z sin(Bpc + ¢)I[ — Be
— (B + BpX — 28T + (Bpc + 6)]

— Mc[yn Sin(Bp + ¢) + 2y, OS(Bpc + $)I[(Opc + 6)°

~(Bpc + SXB + BpX] (C.16c)

The following integral definitions have been used in evaluating the previous ex-

pressions:
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Xes + Leg
f : m.dx = M, (C.17a)
X,

cs

XCS+ L $
f “mexdx = Mox, (C.17b)
xCS
XCS+ LC
"m.X, cos B, dx = M.y (C.17¢c)
ce pt cyc
XCS
*Xes + Lo
J "McXc sin O dx = M.z, (C.17d)
XCS
xCS+ LCS
f mcXy cos 8, dx = M.y, (C.17e)
XCS
XC$+ LCI
f McXy sin 8 dx = M.z, (CA7)
X,

cs

where M, represents the mass of one control surface.
For the offset-hinged spring restrained blade model the differential moment about the

blade root due to the inertial loads acting on the control surface can be expressed as
- — A - A - A -
dMic = [Qin + (X exq + Vi €5+ Zj €,5) x pic] dx

where E,h represents the distributed inertial moment about the control surface hinge, which

can be expressed in the "2” system as

hend A A A
Gih = Qinx2 x2 + Ainy2 €y2 + Ainz2 €22

The x,. y, and z, components of am for the spring restrained blade model are obtained
from the general expressions developed in Chapter 3 by substituting Eqgs. (4.3) and (4.4) into
Eqgs. (3.46).

The total moment about the blade root is obtained by integrating the differential mo-

ment along the span of the control surface, i.e.
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- Xcs+ Lcs —_ A — A - A —
My = J [ain + (X €xa + Vi €ys + Zy €25) X Pl dx

xCS

which can be expressed in the 2" system as
- = A A A
Mic = Mo €+ Micya 8yn + Miczo €22

where

xcs + LCS
Micxo = Qjnxo dX

Xes

XC!+ LCS .
+ f Xy sin(fg + @) Picyo dX
X,

cS

XC§+ LCS
— J Xy €os(0g + @) piczo X
X

cS

XCS + LES XCS+ LCS
+ CJ- X Prezp OX — (B + Bp)f X Piey2 dX
X, Xes

143

XCS+ Lcs XCS + LCS .
Micya = j Qjpy2 dx — [ Xy sin(0g + &) Pyexe dX
« .

CS cS

xCS*‘ LCS
- Cf Xy cos(fg + ¢) piczo dx
X,

cS

*Xeg Lcs
— (B +B,) j Xy Sin(0g + ¢) Pz dX
X

CcS

XCS+ LCS XCS+ LCS
- j X Prezo dx + (B + ,Bp)J X Piexo 9%
X Xes

CS

"Xes + Les
Micz2 =

Xes + Les
Qingo 9% + J Xpy €0s(0g + &) Piexo dX
X

xCS cs

XES + LCS
+ {_[ Xy cos(fg + @) picyo dx
X,

13
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XCS+ LC!
+(8 + Bp)J. Xy sin(Og + @) Picy2 dx
Xes

XCS + LCS xcs + LCS
+ f X Pieyo d% — Cj X Plexa dx (C.19¢c)
X Xeg

131

Before performing the above integrations it is convenient to define the following inte-

grals:

xCS+ LCS 2
f mx“dx = |, (C.20a)
XCS

*Xes + Les
J mcXicx cos 8 dx = | (C.20b)
xCS

XCS+ LCS
J mcXiex sin O dx = |, (C.20c)
XCS

XC5+ LCS
f mcXyx cos B dx = | (C.20d)
XCS

XCS+ LCS
f mcXpx sin O dx = |, (C.20e)
XCS

xcs + LCS 2
J mXpg dx = Jy, (C.20f)
XCS

XCS+ LCS
f (hvc2 + lmca) dx = J¢ (C.209)
XCS

XCS+ LCS

XCS

xCS+ LCS 2 2 .
j (Imc2 €05 05 + Iyca sin“Og ) dx = lyepn (C.20i)
XCS

XCS+ LCS 2 2 .
J (hyca Sin“O + Iycz cosOg) dx = s (C.20j)
X

CS
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XCS + LC! 2 2
J McXp cos 0 dx = Jyp
X,

cS

xC!+ LCQ 2 .2
I mcXp sin“0, dx = Jgp,
xc

$

XCE + LCS 2
MX X €os O dx = Jyne

xcs+ LCS 3 2
j M XX Sin“O, dx = Jgpe
Xes

X,

xcs+ Lcl 2 .
mCXH sin Bpt COS Gpt dx = Jyzh

XCS+ LCS
j mMX X €08 B sin O dx = Jygpe

(C.20k)

(C.201)

(C.20m)

(C.20n)

(C.200)

(C.20p)

(C.20q)

Using the above integral definitions along with Egs. (C.1) , the following integrals can

be evaluated:

cS

= Imer2 SIN"Bpc + & + 8) + Inera €05’ (Bpc + ¢ + )+ hncroa SIn ABpc + b + 6)

cS

= lner23 €08 2A0pc + @ + ) + (Imera — Imera) €OS(0pc + ¢ + 3)sin(Bpc + ¢ + 8)

cS

= Inera €08%0pc + & + 8) + Imera SN (Bpc + & + 8) = Incraz 8In 205c + & + 6)

xl:s+ LCS 2 2
[ o sin®0 + ¢ + )+ lucs cos”B + 6 + 571 ox
X,

Xes + Les
J (‘MCQ - 'MC3) COS(BG + ¢ + 5) Sin(OG + (¢) + 6) dx
X

xcs+ L:s 2 2
_[ [tea €os (g + ¢ + 8) + hyca sin“(Bg + ¢ + )]
X,



XCS + LCS
J- m¢ Xy Xc cos(fg + ¢) cos(8g + ¢ + &) dx
X

= Jync cos(pc + ¢) cos(f,c + @ + ) + Jype sin(Bpc + @) sin(f,c + ¢ + )

— Jdyzne sin(20pc + 2¢ + 6)

XCS+ LCS
j m Xy X cos(fg + ¢)sin(fs + ¢ + &) dx
X

CS

= Jync €Os(0pc + ) sin(fpc + @ +0) — Jync sin(ch + ¢)cos(f,. + ¢ + 5)

+ Jyonc cos(20,c + 2¢ + )

.XCS+ LCS
J m Xy Xic sin(fg + ¢)sin(fg + ¢ + ) dx
X

cs

= Jyne sin(Bpc + @) sin(Bpc + ¢ + 0) + e cos(By + ¢) cos(By + ¢ + 9)

+ dyzne Sin(20,. + 24 + 5)

.XCS+ LCS
J me Xy X sin(0g + ¢) cos(8g + ¢ + ) dx
X

(43

= Jync Sin(Opc + @) cos(bpc + ¢ +8) — Jypne cos(By + ¢) sin(Bpc + ¢ + 9)

+ Jyzne €OS(20,c + 2¢ + 5)

Xeg + Leg 2 2
J m¢ X}y cos(Og + ) dx
X

CS

2 : .
= Jyncos(pc + @) + Jyp, sm2(9pc + @)= Jyzn sin 26, + ¢)
.XCS+ LCS 2 2
J m. Xy sin“(0g + ¢)dx
X

(=]

=J,p cos2(0pc + o)+ dyn sin2(0pc + @)+ Jyznsin 20, + $)
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xcs + Lcs 2 R
‘[ me Xy cos(fg + @) sin(fg + ¢) dx
X,

= Jyzn €08 20 + @) + (Jyn — Izn) cos(Byc + @) sin(B,c + d)

Using the above integrals, the following integrals appearing in Egs. (C.19) can be eval-

uated.

= — [Jync cOs(0pc + @) sin(fpc + ¢ + 8) + Jyzne cos(20c + 2¢ + 6)
— Jyne SIN(0,c + B) cOs(Bpc + ¢ + 8)IUQ + 20)

= Ine[(Bpc + $) €08 & + (B + $)° sin 8]

+ [lye COS(By + ¢ + 8) = by sin(Bpy + ¢ + 5)18

— [lyesin(@pc+ ¢ + 8)+ l,c cOs(Bpc + ¢ + HILE - Q%)

—20(( + BB, + BB)]

—JlBpc + b + S)

+ [Omera = mer3) €OS(0pc + ¢ + &) sin(Bpc + ¢ + d)
+ lincra €08 AB0pe + ¢ + QU + 20) + A8 + ¢ + SXB + Bp)]

+ 2[Imera CO8Ope + @ + 8) + lipgra sin“(Bpc + ¢ + 9)

= lmeraa Sin 2(apc +¢+ (S)]Q[(Qpc + ¢ + 5); - B]

+ [lnera SN2 (0pc + @ + )+ Imera €08’ (fpc + ¢ + 9)
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+ Imcraa Sin 20pc + ¢ + 8)I[2B + LB + (B + B QX + )]

Xes+ Les
Lcs Qiny2 dX = My,
= = 2[Jypc sin(Bp + ¢) sin(fpc + ¢ +6) + Jyzhe $iN(20,c + 2¢ + 8)
+ Jzne €08(Bpc + ¢) cOS(Bpe + ¢ + 6)1QAB,. + §)
- MCQQe[yc sin(Bpc + @ +6) + 7, cos(fyc + ¢ + 6)]
+ [lyc €08(Bpc + ¢ + 8) = Ly sin(Byc + ¢ + S)I[Q(B + Bo) + BIC

= [lye sin(Bpc + ¢ + 8)+ 1, cos(B,c + ¢ + 8)JUAQ + 2)

- ‘Jc(épc + ¢ + BK

+ [Omer2 = Tmera) cos(8yc + ¢ +5) sin(@pc + ¢ + 6)

+ Imer2s €08 205 + ¢ + $)JCQ? = 1)~ 20, + ¢ + 5)3]

+ [lnero ©08°(Bpe + & + 8) + Inera sin%(Bpc + b + &)
~ lmcraa sin 2(ch +¢+ ‘S)][ﬁ - Q2(ﬁ + ﬂp)

= 2A0pc + ¢ + SXQ + )]

XCS+ LCS
Qjphzo dx = Mlh22
XCS

= 2[Jyne sin(fpc + &) cos(f,c + ¢ + 5) + Jyzne €0S(28p + 2¢ + 8)

= Jznc COs(pc + B) sin(Bpc + ¢ + 6)]Q0,c + &)

+ McQze[yc cos(8pc + ¢ +8) - z, sin(Bpc + ¢ + 9)]
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+ [lye CoS(Bpc + ¢ + 8) — I SinBpc + & + 8)]QAQ + 20)
— [lye SinBpc + & + 8) + 1o cOS(Bpc + ¢ + ) ~ (Q2XB + B,)

— JfBpe + & +8XB + Bp)

+ [Omer2 — tmera) €os(Bpc + @ + 8) sin(B,c + ¢ + é)
+ Iner23 €08 2(8pc + ¢ + 8)J[B — 2bpc + ¢ + SXQ+ O]
~ Dmera SIN2Bpc + & + 6) + linecs COS° (B + ¢ + 8)

+ Ingr23 $in 20, + ¢ + S + 20pc + & + 5)B]

Xeg + Les i
j XH Sln(BG + (ﬁ) plcyz dx
X,

(<]

= [lypn Sin(Bpc + @) + Izn COS(Bpc + NL2BB, + Q% - D))

— [Jync sin(Bpe + $)cos(f,c + ¢ + ) — JIyne cos(fp + @) sin(Bc + ¢ + 0)

+ Jyznc €08(20, + 26 + 6)JOpc + & + 5y

— [Jync sin(fpc + $)sin(Bpc + @ + 8) + Jznc cos(Bpc + ¢) cos(Bpc + ¢ + 0)
+ dyzne Sin(20pc + 26 + 8)1(0,c + é+9)
— [Jyzn €08 ABpc + &)+ —;uy,, — Jyn)sin 20, + PI[(Ope + 67

+OQ + 20)+ 2B, + XB + By)]

+ [gn €052 Bpc + ¢) + dyp sin“(Bpc + 6)

+ dyzn Sin A0pc + $)I[Opc + $) + 208 — 220 + $X]
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xcs + Lcs .
[ 0080 + 6 Py 84 = = D11 cO80 + ) b sinOy + 3

cS

+ [Jync cos(pc + @) cos(@pc + & + 8)+ Jyne sin(8,c + 4) sin(f,c + ¢ + 9)
= Jyzne SiN(205c + 26 + 8)1(B,c + 6 + )

— [Jync cos(bpc + @) Sin(Opc + @ + 6) — Jyne sin(fpc + ¢) cos(fpc + ¢ + 9)
+ Jyzne COS(20pc + 26 + 8)](Bpc + ¢ + 5)?

+ [dyn 08’ (Opc + 6) + Uy, sin%B + ¢)
= Jyzn sin A0pc + O)I[Bpc + ) — (B + BX — 2B¢ — L]

= [(yn = Jzn) cos(Bpc + $) sin(B,c + ¢)

+ Jyzn €05 205 + OO + ) — (Bpe + $XB + BXT . (C.25)

sz+ LCS .
f X $in(0g + ¢) Piczp dx = — [Iyp, Sin(B,c + @) + 1, cos(f,c + ¢)18

CcS

+ [Jyne sin(fpc + ¢) Cos(Bpc + ¢ + 6) — Jype cos(bpc + @) sin(f,c + & + 5)

+ Jyznc €OS(20pc + 26 + )10 + ¢ + 8)

= [dyne sin(()pc + ¢) sin(fpc + ¢ + 8)+ Jyne cos(ch + ¢) cos(é)pc + ¢ +6)

+ Jyzne Sin(20pc + 26 + 8))(0pc + ¢ + 8)°

+ [(Jyn = Jzn) cos(B,c + ¢) sin(fc + ¢)

+ Jyzn €08 2A0c + $N(Ope + ) — (B + ) — 28 — L]

— [Jzn cosQ(Opc + @)+ Jdyy sin2(6’pc + ¢)
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+ dyzn $in A8pc + $)1[@pc + & = Bpe + OXB + BpX)

XCS + LCS
J Xy cos(fg + @) picy2 dX
X,

S

= [y cOS(Bpc + @) = lon Sin(Bpc + $)I[22PB, + €? -0

= [yne cos(Bpc + ¢) cos(Bpe + ¢ + 8)+ Jzne sin(Opc + @) sin(fpc + ¢ + )

— Jyzne SiN(2Bpc + 2 + 8))Bpc + ¢ + 5y

— [Jync cos(0pc + ¢)sin(Bpc + ¢ + ) — Jznc sin(fpc + @) cos(Bpc + ¢ + )
+ Jyzhe cos(28, + 2¢ + 5)](épc + ¢> + 5)
— [dyn €0 Opc + &)+ dzn sin(Bpc + $)

— Jyzn Sin A8pc + 0)I[Bpc + ) + QUQ + 20) + 200, + HXB + Bp)]

- [(dyn — Jzn)cos(fpc + @) sin(fc + @)
+ Jyzn €OS 2ABpc + ) (Bpe + &) + 208 — 200, + $X ]

xI:S*- LCS
J Xy sin(Bg + @) Piexe A% = Mc[yn sin(f@yc + ¢) + 2y, cos(fpc + d))]Qze
X,

+ [lyn Sin(@pc + @) + 17 COS(Bpc + $)IAL + 2)

+ 2[Jyne sin(f,c + d) sin(E)pc + ¢+ 8+ Jyne cos(ch + d))cos(f)pc + ¢ +6)

+ Jyzne SIN(20pc + 26 + 5O, + b +5)

+ 2[dyn cos (0pe + )+ dyn sin’(0,c + ¢)

+ Jyzn $in 2050 + $)1A0pc + )
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xcs + LCS
7 X costB + 6)picep 9% = Mol coslBe + ) 25 sin(By + $)10%
X

(43

+ [lyn cos(Bpc + ¢) = Ly, sin(8, + )IAQ + 20)

+ 2[Jyne cos(Bpc +¢) sin(Bpc + @+ 0)— Jyne sin(0p, + ¢) cos(é’pc +¢+0)

+ Jyznc COS(20c + 2¢ + 8)IQB, + ¢ + 6)

+ 2[(Jyn — Jzn) cos(f,c + ¢) sin(f. + ¢)

+ Jyzh cos 2(npc + ¢)]Q(6pc + ¢) (C.29)

Xes T Lcs 2 .
j X Piexg dX = Mx Q% + [.(Q + 2)
X

(41

+ 2[lye sin(Bpc + ¢ + 8) + 1yc cos(By. + b + 5)]9(9pc +¢+38)

+ 2[lyn sin(Bpc + @) + Iy, cos(Byg + P)IAG e + b) (C.30)

XCS + LCS .. . - .
f X Proyz O = 1002 = §) + 21,060 + BB + BB,
X,

143

— [lyc co8(Bpc + ¢ + ) — Lc sin(B,c + ¢ + 8)I[QAQ + 20)
+ B+ ¢ + 67 + e + & + SXB + B,)]

= [lye sin(Bpe + ¢ + )+ 1 cos(0pe + ¢ + S)[(Bpe + ¢ + 8)
+ 208 — 20(0, + ¢ + 6X]

= [lyn €OS(0pc + ¢) = by, sin(0, + ¢)ILAQ + 27)

+ (Opc+ ) + Qb + $XB + )]
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— [lyn sin(Bpc + ¢) + Iz cOS(Bpc + OO + 6)

+ 208 ~ 200, + $X ] (C.31)

XCS + LE‘ .
j X Pz dx = — lcﬂ

xCS

— [lye COS(Bpe + ¢ + 8) = lpc sin(Opc + ¢ + SILB + Bp) — Bpc+ 6 +9)]
— [lye SINBpc + ¢ + ) + Ly cOS(Bpc + ¢ + )I[(Bpc + & + 5y
~ (Bpc+ & + OXB + BpX]
— [hyn ©08(Bpc + $) = Iz Sin(Bpc + $IB + Bp) = (Bpc + )]
— [y Sin(Bpc + ¢) + Ion €OS(Bc + $)1[(Bpc + ¢

~‘(épc'+' ¢Xﬂ +ﬁpX] (C~32)

Explicit expressions for the x,, y, and z, components of M, are obtained by substituting

Egs. (C.21) — (C.32) into Egs. (C.19).

C.2 GRAVITATIONAL ROOT LOADS

The blade gravitational loads at the blade root are obtained by integrating the distrib-
uted gravitational loads along the span of the blade. The gravitational root loads are de-
veloped in the "2” system in which system the distributed gravity loads were developed in
Chapter 3. The gravitational root moment is then transformed to the "3" system in which

the equations of motion are formulated.
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C.2.1 Blade Gravity Loads
For the offset-hinged spring restrained blade model the differential force at the blade

root due to the gravitational loads acting on the blade can be expressed as

dFGb = BGD dx

where BGb represents the distributed gravitational force acting on the blade, which can be

expressed in the "2” system as

— A A A
Peb = Pcbx2 €x2 + Pgby2 €y2 + Pgbz2 €22

The x,, y, and z, components of BGD for the spring restrained blade model are obtained
by substituting Eqs. (4.3) and (4.4) into Egs. (3.55).
The total force at the blade root is obtained by integrating the differential force along

the span of the blade, i.e.
- Ly .
Foo = f Pgp dx (C.33)
0
which can be expressed in the "2” system as

- A A ~
Foo = Fooxe €x2 + Foby2 €y2 + Fopzo €22

where
Lb

Fobxe = J Pobxe dX = — Mg sin g cOs (C.34a)
0
Lb

Fooy2 = J PGby2 9 = Myg sin ag sin (C.34b)
0
'Lb

Fobee = J PGbzz dX = — Myg cos g (C.34c)
0

where the integrals defined by Eqgs. (C.4) have been used to evaluate the above ex-

pressions.
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For the offset-hinged spring restrained blade model the differential moment about the

blade root due to the gravitational loads acting on the blade can be expressed as

- R . B
dMgp, = (dgp + X €x4 X Pgp) dX

where aGb represents the distributed gravitational moment acting on the blade, which can

be expressed in the “2” system as

— A A A
Ggb = GGbx2 €x2 T AGby2 €y2 + AGbz2 €22

The x,, y, and z, components of EGD for the spring restrained blade model are obtained
by substituting Egs. (4.3) and (4.4) into Egs. (3.57).
The total moment about the blade root is obtained by integrating the differential mo-

ment along the span of the blade, i.e.
- Ly . R -
Mgp = f (dgp + X x4 X Pgp) dX (C.35)
0
which can be expressed in the "2” system as

- 0 A A
Mab = Mgoxe €x2 + Moby2 €y2 + Mgpz2 €22

where

Ly L, Ly
Mgoxo = Ggbxe OX + CJ X Pgpze dX — {8 + ﬁp)J- X PGpy2 OX (C.36a)
0 0 0
Ly Ly L,
Mgpy2 = I Aoy 9% — J X Pgbze X + (B + ﬁp)f X PGpxy dX (C.36b)
0 0 0
Ly "Ly vl
Mgbz2 = J. QGbz2 9% + J X PGpy2 dX = CJ X Pgbxg dX (C.36¢)
0 0 0

The various integrals appearing in Egs. (C.36) can be evaluated as follows.

Lb
Qobxe 9% = — Mpglyp cos(Bpc + @) — 2, sin(f,c + ¢)][ cos 25
0
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— (B + BpX sinxgsiny]
— Mgy, sin(@p + @)+ 2, cos(B,c + ¢)] sinag siny (C.37)

Ly
Aooy2 dx = — Mpg(yy COS(GDC +¢)— 2z, Sin(9pc + ¢)][ cos ag

— (B + Bp)sinxg cos Y I
= Mygly, sin(Bpc + ¢) + 2, cos(B,c + $)INB + B) cos xg

+ sinag cos ] (C.38)

Ly
f Agpze 9% = — Mypglyp sin(fpc + @) + 2, cos(D,c + ¢)] sin ag siny
0

— Mpglyy, cos(Bpc + @) — 2, sin(Bpc + )] sin xgl{ siny — cos ) (C.39)
Ly
j XPgpxe X = — Mygx,, sin xg cos ¥ (C.40)
0
vl_b
J XPgby2 X = Mygxy, sin xg sin (C.41)
0
'Lb
J XPgbzz X = — Mygx, cos xg (C.42)
0

where the integral definitions represented by Eqgs. (C.4) have been used to evaluate the
previous expressions.

Substituting Egs. (C.37) — (C.42) into Eqgs. (C.36) yields:
Mgbx2 = — Mp8lyp cos(Opc + ¢) — 2, sin(0 + p)][ cos 2
— (B + B,X sinzgsiny]
— Mpglyp sin(fpc + &) + 2, cos(B,c + ¢)] sin xg sin

— Mpgxy( €os xg — Mygxy( + ;) sin xg sin (C.433)
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Mgpy2 = ~ MpGLYp COS(Bpc + @) — zp sin(Bc + @)][ cos ag
~ (B + Bp)sinagcos Y K
~ Myg[yp sin(Bc + ¢) + 2, cos(c + G)II(B + Bp) cos ag
+ sin x5 cos P ]
+ Mpgx,, €Os xg — Mugxy(B + B) sin ag cos ¥ (C.43b)
Mgbzz = — Mpgl¥p COS(@p + @) — 2p sin(B,¢ + §)] sin 2g(( siny — cos §)
— Mpglyy sin(Bpc + ) + 2, cos(0pc + @)] sin xg sin Y

+ Mygx,, sin 2g sin Y + Mugx{ sin xg cos ¢ (C.43c)

C.2.2 Control Flap Gravity Loads
For the offset-hinged spring restrained blade model the differential force at the blade
root due to the gravitiational loads acting on the control surface can be expressed as
dfFg. = BGc dx
where EGC represents the distributed gravitational force acting on the control surface,
which can be expressed in the "2” system as
o A A A
Pce = PGex2 €x2 t Poey2 €y2 + PGez2 €22

The x,, ¥, and z, components of BGC for the spring restrained blade model are obtained
by substituting Egs. (4.3) and (4.4) into Egs (3.61).
The total force at the blade root is obtained by integrating the differential force along

the span of the control surface, i.e.

- XCS+ LCS_.
X

cS

which can be expressed in the "2” system as
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- A A A
Foe = Foexa @+ Faey2 €2 + Foczo €22

where
xCS + LC’

Foexe = PGexe dX = — M g sin ag cos ¢ (C.45a)
XC’
XCS + LC‘

Fch2 = j PGcy2 dx = Mg sin xg siny (C.45b)
XC!
x:l + LC’

Foeza = f PGezz X = — Mg cos 2 (C.45c)
X

1% 1

where the integrals defined by Egs. (C.17) have been used to evaluate the integrals.
For the offset-hinged spring restrained blade model the differential moment about the
blade root due to the gravitational loads acting on the control surface can be expressed

as:
- — A - A - A —
dMge = [agn + (x ey, + ¥y eys+ Zy €,5) X pgc] dx
where th represents the distributed gravitational moment about the control surface hinge,
which can be expressed in the “2” system as
—_ A A A
Ogh = Aghx2 €x2 T dghy2 €y2 + Aghz2 €22

The x5, y, and z, components of aGh for the spring restrained blade mode! are obtained
by substituting Egs. (4.3) and (4.4) into Egs. (3.63).
The total moment about the blade root is obtained by integrating the differential mo-

ment along the span of the control surface

- x<s+ Lcs — A _ A _ A —
Mge = J- (Agh + (X€xs + ¥y €ys + Zy €;5) x pgc] dx (C.46)
X,

cs

which can be expressed in the “2” system as

A A A
Mge = Maexo €xa + Mgeyz €2 + Mgezs €2
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where

xCS + LCS

Mgexe = Aghxe dX

XCS

Xes + Les
- J. Xy cos(0g + #)N(B + BpXPgey2 + PGez2] A%

CcS

XCS + LCS .
+ '[ Xy sin(fg + @) pgey2 I

XCS

Xes + Les Xes + Les
+ Cf X PGez2 dx — (/3 + ﬁp)J- X chy2 dx (C47a)
X, X,

CS cS

xcs + LCS
Mgeyz = GGhy2 dX
X

cS

xcs + LCS
+ [ X cos(O + (B + oo ~ Poczz K X

S

XC§+ LCS
- j Xy $in(0g + (B + BplPcezz + Pocxa] OX

cs

Xcs + LCS Xes + Lcs
- j X Poczz dx + (B + Bp)j X Pgexe dX (C.47b)
X XCS

cs

xl:s + Lﬁs
Mgez2 = AGhz2 9X

XCS

Xes + Leg
+ f Xy cos(0g + @ XPgey2 + Poexe) dX
X,

'cS

Xes + bes
-+ (‘B + ﬁp)J\ XH Sin(@G + (f))chyg dx
Xes

XCS + LCS xcs + Lcs
+ J X chyZ dx — CJ X PGex2 dx (C47C)
X Xes

13

The various integrals appearing in Egs. (C.47) can be evaluated as follows:
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XCS + LCS
Qohxe dX = Mgpyo
X,

cS

= Mgy cos(fpc + ¢ + 6) — z. sin(B,c + ¢ + 6)][ cos ag
—(B+ BpX sinxgsiny]

+ Mcglyc sin(0pc + ¢ + 8) + 2. cos(Bpc + ¢ + 6)] sinag siny

XCS + LCS
Qghy2 9% = Mgpy?
X,

[+

= Mcglyc cos(Byc + ¢ + 6) — 2. sin(B,c + ¢ + )][ cos g

— (B + By)sin xg cos Y I

+ Mcalycsin(Byc + @ + 8) + z. cos(B,c + ¢ + S)I[(B + Bp) cos ag

+ sin xg cos ]

XL‘S + Lcs
Qghz2 9X = Mgz

XCS

= Mcgly.cos(O,c+ ¢ +8)— z sin(fpc + ¢ + 8)] sin xg({ siny — cos )

+ Mcalycsin(f,c + ¢ + 8) + 2. cos(f,c + ¢ + 6)] sinag siny

XCS + LCS
f X cos(Bg + @) Pgexo dx
X

= — Mgy cos(8,. + @) — zp, sin(B,c + ¢)] sin xg cos ¥
xCS + LCS
[ Xy sin(0g + @) pgexg 9%
XCS

= — Mcglyn sin(f, + @)+ 2y, cos(B,. + ¢)] sin x5 cos ¥

XCS + LCS
J’ Xy cos(fg + @) pgeyr dX
X

(=3
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(C.49)

(C.50)

(C.51)
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= Mgy, cos(Bp + @) — 2, Sin(Bpc + ¢)] sin zg sin

Xeg + Les X
I Xy sin(0g + @) pgey2 9%
X

CcS

= Mg[yn sin(0,c + @)+ 2, cos(fp + ¢)] sin ag sin ¥

xcs + LCI
I Xy €c0s(0g + ¢) Pgegr d%
X,

13

= — Mglyn cos(0pc + ¢) — 2 sin(Bpc + ¢)] cos a5

XCS + LCI R
j Xy sin(0g + @) pgeza d%
X

(5.3

= — MgLyp sin(Bpc + @) + 2, cos(Bp + ¢)] cos 25

XC! + LI‘.!
X Pgexp 0%
X

S

— M.gx, sin xg sin

xc! + LC’
j X Pgey2 A
Xes

M gx. sin ag siny

xcs + LCS
X Pgez2 dX = — Mgx. cOs xg
X,

cS

(C.53)

(C.54)

(C.55)

(C.56)

(C.57)

(C.58)

(C.59)

The integral definitions represented by Egs. (C.17) have been used to evaluate the above

integrals.

Substituting Egs. (C.48) — (C.59) into Eqs. (C.47) yields:

Maexz = McGLYc €08(Bc + ¢ + 8) — 2¢ sin(B,c + ¢ + 8)][ cos ag
— (B + BpX sinxgsiny]
+ Mcgly. sin(f,c + ¢ + ) + z. cos(Bpc + ¢ + 8)] sin g siny
+ Mcglyn cos(Bpc + @) — zp, sin(0c + ¢)1[ — cos xg

+ (B + BpX sinagsiny]
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+ Mcalyn sin(Bpc + @) + 2, cos(B,c + ¢)] sin ag sin yr
— Mcgx{ cos xg ~ Mcgx((B + B,) sin ag sin (C.60a)
Mgeyo = Mcdlyc cos(O,c + ¢ + 8) — 2, sin(fpc + ¢ + 0)][ cos ag
-8+ ﬁp) sin ag cos Yy I¢
+Mcglyc sin(Bpe + ¢ + 8) + z. cos(Opc + ¢ + 6)I[(B + B,) cos ag
+ sin g cos ]
— Mgy, cos(Bpc + @) — 20, + ¢)1[ — cos x5
+ (B + [)’p) sin xg cos Y )¢
— Mcglyn sin(@pe + ) + 2y, cos(fpc + @)L — (B + Bp) cos ag
— sin xg cos i ]
+ Mcgx, cos xg — Mcgxdff + B,) sin xg cos ¥ (C.60b)
Mgz = Mcglye sin(@pc + ¢ + 6) + 2, cos(Bpc + ¢ + 8)] sin ag sinys
+ Mcglyc cos(Byc + ¢ + 0) — z¢ sin(B,c + ¢ + 8)] sin ag({ siny — cos ¥)
+ M.glyy, co's(()pC + ¢)— zy, sin(()pc + @)1 sin ag siny
— SiN xR COS ]
+ Mcglyn sin(@p. + @) + z,, cos(Opc + ¢)I(B + Bp) sin xg siny

+ Mcgx; sin xg siny + M gx.{ sin a5 cos (C.60c)
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C.3 AERODYNAMIC ROOT LOADS

The total aerodynamic force and moment at the blade root are determined by integrat-
ing the distributed aerodynamic loads developed in Chapter 3 along the span of the blade.
The integrations are performed directly in the "5” system in which the distributed aero-
dynamic loads have been formulated. After obtaining the root loads, the aerodynamic
moment about the blade root is transformed to the “3” system, in which the equations of

motion are formulated.

C.3.1 Blade Aerodynamic Loads
For the offset-hinged spring restrained blade model the differential force at the blade

root due to the aerodynamic loads acting on the blade is given by
dfab = Pap 0%

where EAb represents the distributed aerodynamic force acting on the blade. which can be

expressed in the "5” system as

— A A
Pab = Pabys €y5 1 Papzs €5

The y5 and zg components of BAD for the spring restrained blade model are obtained from
the expressions developed in Chapter 3 by substituting Egs. (4.3) and (4.4) into Egs.
(3.109).

The total force at the blade root is obtained by integrating the differential force along

the span of the blade, i.e.
— Ly,
0

which can be expressed in the "5” system as

- A A
Fap = Fabys €y5 + Fapzs €5
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Before integrating the aerodynamic loads along the span of the blade it is convenient
to define two sets of aerodynamic coefficients. The first set is associated with the inte-
gration of the aerodynamic lift and moment along the span of the blade; the second set is
associated with the integration of the aerodynamic drag. In the integration of the aero-
dynamic loads along the span of the blade a plethora of integrals involving the products
of various powers of x and the pretwist distribution of the blade Bpt(x) arise. A scheme for
consistently keeping track of the numerous integrals used in this derivation has been de-
vised. The following scheme is used to define a set of coefficients associated with the in-

tegration of the aerodynamic lift and moment along the span of the blade:
Lo n,m
Apm = pAaocbf Rim X Opi(x) dx (C.62)
0

where Ry, represents the reverse flow parameter defined in Chapter 3 which is associated
with the integration of the aerodynamic lift and moment along the span of the blade.
Similarly. the following scheme is used to define a set of coefficients associated with the

integration of the aerodynamic drag along the blade span:
Ly n
B, = pAaoch- Rpx dx (C.63)
0

where Ry represents the reverse flow parameter defined in Chapter 3 associated with the
integration of the aerodynamic drag along the span of the blade.

Using the scheme represented by Eq. (C.62) the following set of aerodynamic coeffi-
cients which arise in the integration of the aerodynamic lift and moment along the span of

the blade are defined as follows:

Lb
o]
oL,
Agy = pAaoch Rim ol x) dx (C.64b)
0
‘Lb 2
0
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Ly
A10 = pAaoCbJ. RLM X dx (C64d)
(¢}

Ly

A11 = pAaoch;) RLMXGpt(X) dx (CSAe)
Ly 2

Ap = pAaoch; Rim X Op(x) dx (C.640
Ly 2

A = PA3oCp| Rymx" dx (C.64g)
0
Ly 2

A21 = pAaoch;) RLMX ept(x)dx (C64h)
L 2 52 ,

A22 = PadgCh X RLM X Op[(x) dx (C64|)
Lb 3 .
0
Ly 3

Az = pAaoCDJ Rim X O(x) dx (C.64k)
0

Similarly, using the scheme represented by Eqgs. (C.63) the following set of aerodynamic
coefficients associated with the integration of the aerodynamic drag along the span of the

blade are defined as follows:

Ly

By = pAaoch Rp dx (C.85a)
0
Ly

B1 = pAaoCb RDXdX (C65b)
0
Ly 2

Bz = pAaoCb RDX dx (CBSC)
4}
Ly 3
0
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Performing the integration for each component in Eq. (C.61) yields
Ly
FAbyS = J- Pabys dx
0
= Acof{[g-coXn = Colpc + §XBpc + #)+ QRN = LeokOe + 9)
- %cbsze(apc + X0+ 6) - %().QR)Qe(GpC +d)+ —;(/'.QR)Q]
+ [ = 3ulOpc + $1% — Sl + 9X0pc + $X — TUQRNO. + SX
+ —;«A - %cbxépc + BXB+ Bp)— %cbg(epc +¢)°
— 52O+ $XB + Bo) + -celOpc + B

+ (GQRXB + B)JuER) cos

+ [%cbsz(opc + ¢ - %-cb(opc + $XOpe + 6) — %(;.smxepc + )
— 3020 + BB + BRI)HR) sin

— HBpc+ XB + BXHQRY cos v sin ¥

+ L= HOpc + 9B + BoX + 1B + B TUQRY cos?y)

+ Ao,{[%-cb(XA - —}cbxépc +é)— %cbge(épc +¢)— %(/’.QR)Qe]

+[- %cb(apc + ¥ - %cb(()pc + X~ %{/’.QR);’ - _}cbgz(opc + )

— 2Qe(B + Bp) + ey JuR) cos y

+ [ Co2Bpc + B — -culfpe + §)— THQR)

371



— ScofB + B)NHOR) sin
— B+ BXHORY’ cos ¥ sin § — 2B + BX(uRRY cosy}
+ Al — @+ DXUQR) o5 Y + e QLUOR) sin ]
+ Aroll = gcollpc + )L — eofBpc + $X(Bpc + $) — QRN + $X
+ 3-CoSUbpc + HE(B + B) = QRO + HX
- —;—Q?e(epc +OXB + B X + %ch(ch + ¢)BL
+ (QRKUB + BoX + 2Xn = 2-Colle + $)B
— 2 20pc + $XPpc + @)+ TUQARKABp + BB,
+ %{).QR)Q(OPC + o) - %(/ZQR)Q(OF,C +¢)
_ %Qe(opc + OB+ %cb(opc + ¢)B + GQR)B]
[ = O+ KB + Bo) = SQBpc + $XB + Bo)* — B + S
QAR+ BpPL + 2B+ BIB(B + BBy
U0 + SIBB + Bo) = A0 + $XB + By)
+ BB + Bo)NuQR) cos

+ [ = 1pc + OXB+ BpK — +40pc + DWNUQR) sin )
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+ Ar{l= oBp+ 0K — ey + 9L — cylBye + $X
~ QR + 1o QLB+ By) - — Qb+ HX
_ %(/'QR)Q{Q _ %Qge(ﬁ +BoX + -;—CDQBC
+ 0SB+ BIBB,+ o0 + B
— %cbgz(()pc +¢)+ %cbsz(Gpc + X + BB — %Qel?
+ HIQRBA, + HQRIB? - QR + -]
L= B+ Bk — S8+ Bk — T
_ %gz(ﬁ + B))(HQR) cos y
+ L= 5B+ BoX — T BUMQR) sin )
+ Ap[— %cbi - %chZZ + %cbﬁl(ﬁ + )R]
+ Agl — %(gpc Y %522(% + PN+ BoX + QBB + BpX
— U+ B + 4]

Al = @+ — TQ%B + BoX]

c
+ By~ - LR~ -Lo%e?
o 2 2

+ [ — (ZQRYB + Bp) — eQ{YuQR) cos ¥ — eQuQR) siny
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+ [ =387 = B+ B JuRY cos™y — L{uORY’ siny

— L(uQR)Y cos ¥ sin )

Cdo
a

+ By (=2 ){[ - Qe(Q + ()~ ((QR)B]

+ [ = (Q+LX — BB + B)NuQR) cos v
HL= @+ D)= Q0+ QBB + SO IUQR) siny )
C

+ Byl - %(Q +¢f - —;—92{2 + BB + %92[32 ~ %/'32] (C.66a)

Ly
Fabzs = | Papzs 9%
0

= Ago{l — 2-coXa = CoXBpe + 6) — T2e(Xn — TCokbpc + §)
+ 3CoS2e(Bpc + 8) + 307X Bpc + §) — S {IQRK2e]
+ [ el@ + {Xfpe + 6) = 3 Xallpc + DX + g-olfpg + SX
+Qe(B, + DX, — %{/’.QR): - %Qe(ﬁ + Bo)— %c,,ﬂ](usm) cos
+ [ = eofU0p + $X = 2 XaBpc + 6) + SelBpc + )
+ Qe(0,c + &) — %(/’.QR) + %cbszw + BHQR) sin
+ (3405 + $X7 = 1B + B X YUQRY cosy

+ %(ch + ¢XuQR)2 sin2|,’/
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+ B + $X = 4B + Bo)NHORY: cos ¥ siny )
+ Ay {%S)QeQ + [%cb(gz + ) + Qe JuQR) cos ¥
+(- —;—cbszg + QeYuQR) sin ¥
+ %{2(;152R)2 cos?y + %(usmf sin2y + L(uQR) cos ¥ sin )
+ A10{[%cb(6pc +oX — %XA(%C + oY + —g-cb((?pC + X + Qe(8, + O X
- %().QR)C;’ - —;«ch(B +BoX — %(/’.QR)Q{? - %Qze(/} +BpX
- %cbszﬁc - %szx,}(()pC +é)+ %cbsz(iapc +¢)
+ Q%8 + ¢) + %(/'.QR)QBBF, + %(),QR)QBQ
- —;—(}.QR)Q - %Qe[)’ - %cbﬂ]
+ 192+ {XOpc + $X — 4 + {XB + Bp) — 2RI WKSR) cos
1R +X0pe + )+ 2 U0pc + $X7 = -AB + Bk
— Qe + BBy — B Opc + ¢)— LBAURR) sin ¥/}
+ Agq {(_;-cb': + el + Q%)+ {(Q + LXpQR) cos

P+ O+ %52:2 — QB - %S)ﬁz](;zszR) sin )

Aol + {0 + @) = B + 300 + 6X7 - TQUB + BX
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~ QB0+ #) — 3B O + $) — 3 B]

+ Am[%(Q +EP+ %928 — Q%88 - -%—QQBQ]

+ By i": ) - %().QR)(;;QR) siny — %(3 + BXHQRY cos ¥ siny]

+ BRI ~ LUQR - 108 + BNUOR) cos ¥~ LAUQR)siny]

_ By 210 );_QB (C.66b)

where the aerodynamic coefficients defined by Egs. (C.64) and (C.65) have been used to
evaluate the above expressions.
For the offset-hinged spring restrained blade model! the differential moment about the

blade root due to the aerodynamic loads acting on the blade can be expressed as
~ . R N
dMpp = (dap + X €x4 x Pap) dX
where aAb represents the distributed aerodynamic moment acting on the blade, which can
be expressed in the "5” system as
— A
dap = Yabxs €x5

The x5 component of aAb for the spring restrained blade model is obtained from the ex-
pression developed in Chapter 3 by substituting Eqgs. (4.3) and (4.4) into Eq. (3.110).
The total moment about the blade root is obtained by integraling the differential mo-

ment atong the span of the blade, i.e.

Lo n -
Map = (Qap + X€xq % Pap) dX (C.67)
0

which can be expressed in the “5” system as

- A A A
Mab = Mapxs €xs + Mapys €ys + Mpgzs €5
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where
Lh

Mabxs = J. Qabxs dX
0

= Aoo{[ et ?(/.QR)QGXA — —2—5—6—Cb(9pc + ¢)]

+ [ = TR + 16,QXn = 1CpXBpc + )
— 2QeXy(B + o) — 7cilXn — 1B IUQR) cos ¥
+[ - %()(A - —;—CDXXA - %Cb)(BpC + )+ QeXpBpc + ¢)

1,. 1
— QRN+ Scpf2Xn = ~-coXB + By)

Cmo :
+ CpQe(— ) J(uQR) sin ¢
0

— XA + BX(HRY’ cos’y

C
+ [ Xa(Bpc + )+ o —TO(UQR) sinY
2 P 2 a5

Cm - .
+ [X(Opc + $X + e 370X ~ TXAB + BUHOQRY cos ¥ siny )
+ Am[%ch(XA - %c,,xpszR) cos Y + QeXa(uQR) sin

+ —%—XA(NQR)Q sian,-’/ + XA{(HQR)2 cos i sinys]

CbXXA - %Cbxgpc + d))

+ Ayl - %{).QR)XA{ - %sz(xA - %

+ Q%eXp(fpc + B)— %{).QR)QXA - %QeXAB
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1 1 2 C
—_ ?Cb(XA - ch)ﬁ + CDQ e(—argg')]

+ 1= 5 XaB + Bk + OXn(Opc + B — TXaBL

C
+ oK, — ZOX(B + Bp)JWR) cos

C
+ DXA(Q + EXBp + @) + ey = )g %QXA(B +BoX

— X8+ X Cono UQR) sin )
2 a5

+ Ay [Q2%eXy + QXAL(HQR) COS Y + XA + {XuQR) sin ¥ ]
1 A A A

+ Agol 5 KaUQ + 2 NOpe + 6) = X +

142 1 ; 1
— 5 XalB + BoX — XA + >

+ A21%XAQ(Q +25) (C.68a)
Ly
Mabys = —J; X Papzs dx
_ 1 1 P T 1 1 ; ;
= A,O{[—a—cb(XA — —“—cb)((ipC + ¢)+ ?Qe(XA — ?cb)(Gpc +¢)
— Lee(d, + ¢)— 10%A6, . + )+ LUOQRKE
8 b pc 2 pc g\ ]
L= 50l Q+ Dl + @)+ 1 XaBpe + B — Sy + 61X
~ Qe+ dX + %{/’.QR): + %Qe([i +B,)+ %CDB](,LIQR) cos ¥

+ [%CbQ(apc + oK + %XA(QDC +¢)- %Cb(epc +¢)
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— Qe(fpc + ¢)+ T{AQR) — 2B + B NUAR) sin Y
+ [ = HOpc + $X7 + 2B + BX IR cos”y
- %(epc + GXUQR) sin%y
+ [ = Opc+ $X + B + BJUOR)? cos ¥ sin )
+ Aqp{— %Qzez - [-;—cb(sz + )+ Qel JuQR) cos ¥
+ (%cbnc — QeYuQR) sin ¥
~ LEUORY cos™y — LR sin®y — {(HQRY cos Y sin ¥}
+ Ago{l = ColOpc + 9 + 3Xa0pc + $X — Scofpc + $X — QelOp + $X
+ —;—(/‘.QR)(;' + %cbsz(ﬁ +BpX + %{Z.QR)QCQ + —;—Qze(ﬁ +B,X
+ Lot + X aBpc + §) — 0 A0p + )
— Q%e(f, + $) - %(/’.QR)Qﬁﬁp - —}{}.QR)Qﬁz
+ —;—(/'.QR)Q + %Qe/? + %cb'[;]
1= (@ + Dl + @K + Q +XB + Bp) + A UUQR) cos ¥
[~ Q@+ MO+ ¢) = 2 Ubpc + S+ QB + BoX
+ Qe + $BBy + 3B pc + §)+ TBUQR)sin ¥}

+ Ag{(~ %cbﬁ — Qel — Q%) — {(Q + L XuQR) cos ¥
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+[—(Q+0) - 2907 + BB, + 1B uR) sin )
+ Agol — R+ 0FOpc + )+ 2B~ 192705 + X7 + LB + X
+ QBBBpc + §) + QBN 0pc + 9)+ 10B]

+ Ayl — %(Q + iR - -;—sz"’g? + Q%8B + %QZ/#]

CdO
aq
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Cao 1 22 14202 2 12,2
——{Q+ )Y = O+ PR+ T~
- il 7 &) S BBy > B >

+ By(—

where the aerodynamic coefficients given by Egs. (C.64) and (C.65) have been used in the

above expression.
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C.3.2 Control Flap Aerodynamic Loads
For the offset-hinged spring restrained blade model the differential force at the blade

root due to the additional aerodynamic loads produced by the control surface is given by
dFpc = Ppc dx

where EAC represents the contribution to the total distributed aerodynamic force acting on

the blade from the control surface, which can be expressed in the “5” system as

— A A
Pac = Pacys €ys t Paczs €5

The yo and z5 components of EAC for the spring restrained blade model are obtained from
the expressions developed in Chapler 3 by substituting Eqgs. (4.3) and (4.4) into Egs.
(3.119).

The total force at the blade root can be obtained by integrating the differential force

along the span of the control surface, i e.

- 'xcs+ Lcs_.
Fac = J Pac dx (C.70)
X

Cs

which can be expressed in the "5” system as

- A A
Fac = FAcyS €ys + Faczs €25

Before integrating the distributed aerodynamic loads along the span of the control sur-
face it is convenient to define two sets of aerodynamic coefficients. The first set is asso-
ciated with the integration of the aerodynamic lift and moment; the second is associated
with the integration of the aerodynamic drag. In the integration of the aerodynamic loads
along the span of the contro! surface a plethora of integrals consisting of products of vari-
ous powers of x and the pretwist distribution ()m(x) arise. A scheme for consistently
tracking the numerous integrals associated with the derivation has been devised. The
following scheme is used to assign coefficients to the various integrals which arise in the

integration of the additional aerodynamic lift and moment due to the control surface:
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(x) dx (C71)

where C; represents the aerodynamic correction factor defined in Chapter 3 associated
with the additional aerodynamic lift and moment due to the presence of an aerodynamic
surface predicted using two-dimensional quasi-steady aerodynamics.

Similarly, the following scheme is used o assign symbols to the various integrals as-
sociated with the integration of the additional aerodynamic drag acting on the blade due

to the presence of the control surface:

XCS+LC5 n
D, = pAaO’- x dx (C.72)
X

cS

The aerodynamic coefficients defined by Eqgs. (C.71) and (C.72) are substituted directly into
Eqgs. (C.75) in order to obtain explicit expressions for the force at the blade root due to the
aerodynamic lcads acting on the control surface.

Using the scheme defined by Eq. (C.71) the following set of aerodynamic coefficients
which arise in the integration of the aerodynamic lift and moment along the span of the

control surface are defined as follows:

'XCS+ LCG

Coo = PadC ' dx (C.73a)
.XCS
.XCS+ LCS )

Cor = pAaOCfJ X} dx (C.73b)
x(S
‘XCS+ LCS 2

Coy = ;JAaOCf‘ 0(x) dx (C.73c)
'XCS
'XCS+ LCS

Cig = PadsCy ‘ X dx (C.73d)
‘XCS
XCS+ LCS

Cy = pAaOCf,- X Hy(x) dx (C.73e)

XCS
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Xes + Lo

2 a2

Ciy = pad,Cy J; x O(x) dx (C.73f)
xl:‘+ L‘, 2

Coo = PA3C x" dx (C.739)
Xcy
X“+ Lcs 2

C21 = pAaoC,I X Gp((x) dx (C?gh)
Xes
xcs+ Lt! 2 a2

C22 = pAaOCfJ- X Gpt(x)dx (C73|)
Xes
xc!+ Ltl 3

C30 = pAaOC,J X~ dx (C73])
Xeg + Ly 3

C31 = pAaonJ- X Hpt(x) dX (C73k)

xcs

Similarly, the following set of aerodynamic coefficients which arise in the integration

of the aerodynamic drag along the span of the control surface are defined as follows:

"Xeg + Les

Dy = pAaoJ dx (C.74a)
XCS
XCS + LCS

D, = pAaOJ x dx (C.74b)
Xes
xtl+ LC! 2

D, = pAaof x“ dx (C.74¢)
xC!
XCS+ LCS 3

Dy = pAaOJ x” dx (C.74d)

XCS

Performing the integration of each component in Egs. (C.70) yields

xcl+ LC‘
Facys = J’ Pacys dx
X

cs
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- %ccssz(/s + B XuQR) cos Y — -;——ccs[i(uQR) sin )
4 Conl — e B Iﬂ _ 2 Tyo _ A1 ;
20l — CoBLl76 — (B + BpK(5210 — -ccfUBpc + 618
iy ~ 110 1. a2
Cb + Ccs)Qﬂ(a—o)«S + ?Ccsﬁ ]
Cprc QY
- 21‘:2'ccs B
2

c
— DR siny
o

C
- D1cCSQa—°o°(uQR) siny

388



C
_ %DZCCSQZ a‘f (C.75a)

X5+ Les
Faczs = J’ Paczs dX
X

133

_ 1 20y T4
= Cpof — TCDQ(T»(FQR) cos
o
Ti1
+[—~— b(——)é + cb(2cb + SCCS)(———ao )6
Tio 1,; :
+ 2che(—a—)6 - ?(/.QR)CCS](uQR) siny
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+ 3 CesOpc + $) + (Co + oM PUHQR) sin’y
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+ c21—;~ccs§22 (C.75b)

where the aerodynamic coefficients defined by Eqgs. (C.73) and (C.74) have been used in
evaluating the above expressions.

For the offset-hinged spring restrained blade model the differential moment about the
blade root due to the additional aerodynamic loads acting on the blade due to the presence

of the control surface can be expressed as

- - A -
dMAC = (QAC + Xex4 X pAC) dX
where EAC represents the contribution to the total distributed aerodynamic moment acting
on the blade from the control surface, which can be expressed in the “5” system as
- A
9ac = Gacxs €xs

The x5 component of aAC is obtained from the general expressions developed in Chapter
3 by substituting Eqs. (4.3) and (4.4) into Eq. (3.120).
The total moment about the blade root is obtained by integrating the differential mo-

ment along the span of the control surface

- Xes+ Les A N
Mac = j (Qac + X€y4 X Pac) dX (C.76)
Xes

which can be expressed in the “5” system as
- A A A
Mac = Macxs €xs + MAcyS €ys+ Maczs€zs

where

XCS + LCS
Macxs = Qacxs dX
X,

CS

Tig - Tep -
1e20oe 185+ %cﬁ(cb + ccsya’_Té
o]

= Cnhnf _—
0oL 8 ao

T . .
+ a;a[%cb@ + %ng + —;—(cb + ¢ PQ8YuQR) cos ¥
[e]
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2 3,

where the aerodynamic coefficients defined in Egs. (C.73) and (C.74) have been used in the
above expressions.
The total aerodynamic moment about the control surface hinge is obtained by inte-

grating the distributed aerodynamic hinge moment

XC$+ LCS_.
X,

cS
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where the aerodynamic coefficients defined by Egs. (C.73) and (C.74) have been used to

evaluate the above expression.
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C.4 TOTAL ROOT LOADS
The resultant force and moment at the blade root is obtained by summing the contrib-
utions from the inertial, gravitational and aerodynamic loads acling on the blade and the

control flap

FR = Fio+ Fic+ Fop+ Foct Fan + Fac (C.80)

Similarly, the total moment about the blade root is given by

MR = M|b+ MlC+ MGD+ MGC+ MAD+ MAC (C81)

Since the equations of motion are formulated in this study in the "3” system, it is nec-

essary to express Mg in the "3 system, ie.
- N A A
Mg = Mgya €3 + Mgya €y3 + Mgzg €23 (C.82)

The inertial and gravitational root loads have been formulated in the "2” system and the
aerodynamic root loads have been formulated in the ”5” system. Before the components
of the total root moment in the "3” system can be determined it is necessary to transform
the inertial. gravitational and aerodynamic root moments to the “3” system. This is ac-
comptished using the coordinate transformations defined in Chapter 2.

After transforming the various components to the “3” system, the following expressions

are obtained:

Maxs = Minxe + Mick + Mabxe + Moexe + Maoxs + Macxs

F B (Migzn + Miczo) + Bp(Mgpzo + Mgcz2)

— UMagys + Macys) = B(Magzs + Maczs) (C 83a)
Miys = Mgy + Migya + Mopya + Mgeya + Mapya + Macys

+({(Mppus + Macxs) (C.83b)

Me,s =+ Mo + Miczo + Mgpzo + Mgczo + Mapzs + Maczs
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= Bpo(Mipxz + Migo) = Bo(Mgpxo + Mgexo)

+ B(Mapxs + Macxs) = BlMapys + Macys) (C.83c)

C.5 HINGE MOMENT

The total moment about the control surface hinge axis, which is oriented parallel to the
elastic axis of the blade, is required later in this study in order to calculate the power re-
quired to drive the control surface. The total hinge moment about the hinge axis is ob-
tained by summing the contributions of the inertial, gravitational and aerodynamic loads.
The hinge moment is assumed to act about an axis parallel to the x, axis. The total hinge

moment is given by

Ms = M5+ Mgs + Mps (C.84)

where
Mis = Ming + {Minryo + (B + BuMiprz0 (C.85)
Mgs = Mgnxz + {Mgny2 + (B + Bo)Mghzs (C.86)
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vibration reduction characteristics of the ACF. The results clearly demonstrate the feasibility of this new approach to
vibration reduction. It should be emphasized that the ACF, used together with a conventional swashplate, iscompletely
decoupled from the primary flight control system and thus it has no influence on the airworthiness of the helicopter.
This attribute is potentially a significant advantage when compared to IBC.
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